F19: Infinity Mirror

From Embedded Systems Learning Academy
Revision as of 02:29, 13 November 2019 by Proj user22 (talk | contribs) (Team Deliverables Schedule)

Jump to: navigation, search

Infinity Mirror

Abstract

In this project our main aim to build an embedded system based Music System that also displays 7 bands of frequency spectrum on an (32 x 64) LED display. The MP3 system plays music through a speaker interfaced with the board. It deals with the convergence of various services such as gesture recognition, audio decoding, audio saving and retrieving and audio frequency band visualisation etc. This project consists of 'Audio Codec', 'RGB LED Matrix' and 'HC-05' along with some other onboard features like 'Gesture detection', 'Ambient Light Sensing' and 'OLED Display' with SJ-two Launch pad.


Block Diagram of Infinity Mirror

Introduction & Objectives

The key features support by the system are real-time Gesture recognition & trigger actions in player and display audio Spectrum on LED matrix:

1. Determine the actions of air gesture based on the input received or through a manual key selection of songs from the Songs List (In this prototype, search for the response for recognised gesture from the database & perform actions to other peripherals.)

2. In response, retrieve the data from the SD Card & communicate to the audio decoder for audio streaming.

3. Onboard display will show current playing song information and LED Matrix will show audio spectrum patterns using mirroring Visualisation effect.

4. Interacting with HC-05 bluetooth for communicating with Mobile App.

5. A Game related to Audio and Gesture detection - a ball smasher game in which ball will be randomly created on the LED matrix based on the Audio Frequency which will be smashed by collecting Gesture in that particular direction and display the score on the OLED Display.


Project Objectives

     1. Audio Codec - Interacting with Audio Codec for getting the sound samples & generating sound signals from the device
     2. Gesture Sensor - Detects the Hand Gesture and send the detected gesture to LED Matrix to navigate LED's.
     3. SD Card - Audio data or mp3 files will be retrieved from the SD card based on the user selection.
     4. Audio Decoder - Intelligently processing the audio data using audio decoder and sent to the LED Matrix to display spectrum patterns.
     5. Bluetooth HC-05 - Interfaces the system using Bluetooth to an Android application. 

Team Objectives

     1. Learn each and every module as much as possible, in order to develop an overall product.
     2. Understand the proper use of queues and semaphores in order to send/receive the data between multiple tasks.
     3. Document and track all the bugs encountered during development and learn to update git repo after every fix.

Team Members & Technical Responsibilities

TEAM INFINITY MIRROR


Administrative Responsibilities

Administrative Roles
  • Team Lead
Aakash Chitroda
  • Finance Manager
Niket Naidu
  • Git Repository Manager
Vidushi Jain
  • Wiki Report Manager
Vidushi Jain
  • Bill of Materials Manager
Ganesh Ram

Team Deliverables Schedule

WEEK

START DATE

END DATE

TASK DETAILS

STATUS

1 15 Oct 2019 22 Oct 2019
  • Create and establish GitLab repository
  • Establish slack channel and invite Preet
  • Look through previous years projects and study it
  • Distribute major roles among team members
Completed
Completed
Completed
Completed
2 23 Oct 2019 29 Oct 2019
  • Create a Bill of Materials
  • Select and order Parts
  • Review Data-sheet and Interfacing Of LED Matrix(Ganesh)
  • Review Data-sheet for Gesture sensor(Vidushi)
  • Make Repo on Gitlab for all modules - Follow Naming Convention.
Completed
Completed
Completed
Completed
Completed
3 30 Oct 2019 5 Nov 2019
  • Review Data-sheet of Audio MP3 shield(Aakash)
  • Start Soldering for LED matrix and MP3 Shield
  • Start Soldering of Headers for MP3 Shield & decoder
  • Environmental setup of Android & Web applications(Niket)
  • Implementation of Gesture Detection (Vidushi)
  • Implementation of displaying text on LED Matrix (Ganesh)
Completed
Completed
Completed
In Progress
Completed
Completed
4 6 Nov 2019 12 Nov 2019
  • Understand Audio Sampling(Aakash).
  • Implementation of OLED Driver(Niket)
  • Initialisation the Audio Decoder through SPI communication and read manufacturer ID
  • Implementation of displaying Moving Object on LED Matrix (Ganesh)
  • Implementation of communication Between two task(gesture_detect & LED_Display) using queues and semaphores (Vidushi)
  • Display Gesture Sensor Directions on OLED in a Text (Vidushi & Niket)
  • Read Song from SD Card and send to MP3 Shield
TBD
TBD
TBD
TBD
TBD
TBD
TBD
5 13 Nov 2019 19 Nov 2019
  • Circuit Simulation in Diptrace/Eagle Tool. (Aakash)
  • PCB Layout Design in Diptrace/Eagle Tool.
  • Finalize Components placement on PCB.
  • Receive Values from audio spectrum and send to LED_Display task to display on LED Matrix.(Aakash & Ganesh)
  • Interface OLED with onboard buttons to access the list of songs (Niket)
  • Send the song data received through SD card to the audio decoder.
  • Developing logic for the ball movement and translating hand-gesture control into LED movement.(Ganesh)
TBD
TBD
TBD
TBD
TBD
TBD
TBD
6 20 Nov 2019 26 Nov 2019
  • Interfacing of all modules sensors, bluetooth , MP3 and LED Matrix
  • Test whole implementation after integration of all modules
  • Test for stack overflow and system crash
  • Debug and Test the Play/Pause/Stop functionality of MP3 player
  • Integrate Game feature to the MP3 Player
  • Update Final Wiki Schedule.
TBD
TBD
TBD
TBD
TBD
TBD
TBD
8 27 Nov 2019 3 Dec 2019
  • Additional Feature week
  • Establish Bluetooth communication of Device and Mobile APP
  • Develop UI on Android application.
  • Add Play/Pause/Stop and Song selection functionality to the APP.
  • Update Wiki with new details and information.
TBD
TBD
TBD
TBD
TBD
9 4 Dec 2019 10 Dec 2019
  • TESTING - CRITICAL WEEK
  • Packaging of hardware board and related components.
  • Check overall robustness of the complete system.
  • Establish complete connection on PCB
  • Update wiki with details.
TBD
TBD
TBD
TBD
TBD
10 11 Dec 2019 17 Dec 2019
  • All hands on testing and final bug fixes.
  • Check for tuning or calibration of sensors if required.
  • Complete end-to-end testing for various scenarios and conditions.
  • Create the semester long project activity video and upload to YouTube.
  • Update and finalize wiki.
TBD
TBD
TBD
TBD
TBD
11 18 Dec 2019
  • DEMO: Final Project
  • SUBMISSION: Final Project Wiki
TBD
TBD

Bill of Materials (General Parts)

PART NAME

PART MODEL & SOURCE

QUANTITY

COST PER UNIT (USD)

  • Micro-Controller Eval-Boards
  • LPC 4078 (Purchased from Preet Kang)
  • 1
  • 50.00
  • Audio decoder Breakout Board
  • 1
  • 26.95
  • Audio Analyzer
  • 1
  • 19.00
  • RGB LED matrix
  • 1
  • 49.95
  • Power supply
  • 1
  • 12.95
  • Audio Speakers
  • [3.5mm Jack Stereo Speakers]
  • 1
  • Own
  • PCB parts and other Miscellaneous parts
  • Anchor Electronics and Digikey
  • 1
  • 50.00
  • PCB Fabrication
  • 5
  • 29.53


Printed Circuit Board

Design & Implementation

The design section can go over your hardware and software design. Organize this section using sub-sections that go over your design and implementation.

Hardware Design

RGB LED Matrix

A 32 x 64 RGB LED Matrix will be powered up through a 5V/4A DC adapter and is interfaced with the board to display the frequency bands and other relevant messages such as "Next", "Previous" and "Pause". Only the INPUT IDC connector will be used because we are not cascading multiple matrices. The matrix has 2 planes (upper and lower), both of which will be programmed separately. In order to set RGB color data for each pixel in plane 1 (top half of the display) we use R1, G1 and B1 pins and for plane 2 we use R2, G2 and B2. By setting and resetting the CLOCK pulse, color data is set for every pixel in the row. Then the LATCH is set to mark end of the row and reset to move to next row. All of these steps are repeated at very less time intervals so that the human eye perceives it as one complete frame (Persistence of Vision).

Below is the description of the pins:

  • R1 -> Sets upper panel's Red data
  • G1 -> Sets upper panel's Green data
  • B1 -> Sets upper panel's Blue data
  • R2 -> Sets lower panel's Red data
  • G2 -> Sets lower panel's Green data
  • B2 -> Sets lower panel's Blue data
  • A -> Sets row bit 0
  • B -> Sets row bit 1
  • C -> Sets row bit 2
  • D -> Sets row bit 3
  • CLK (Clock) -> Set to access each pixel
  • LAT (Latch) -> Set to mark comletion of one row
  • nOE (Output Enable) -> Set to switch the LEDs off when transitioning from one row to the next
  • GND -> Ground pins to be connected with board's GND.

Hardware Interface

In this section, you can describe how your hardware communicates, such as which BUSes used. You can discuss your driver implementation here, such that the Software Design section is isolated to talk about high level workings rather than inner working of your project.

Software Design

Show your software design. For example, if you are designing an MP3 Player, show the tasks that you are using, and what they are doing at a high level. Do not show the details of the code. For example, do not show exact code, but you may show psuedocode and fragments of code. Keep in mind that you are showing DESIGN of your software, not the inner workings of it.

Implementation

This section includes implementation, but again, not the details, just the high level. For example, you can list the steps it takes to communicate over a sensor, or the steps needed to write a page of memory onto SPI Flash. You can include sub-sections for each of your component implementation.

Testing & Technical Challenges

Describe the challenges of your project. What advise would you give yourself or someone else if your project can be started from scratch again? Make a smooth transition to testing section and described what it took to test your project.

Include sub-sections that list out a problem and solution, such as:

Bug/issue name

Discuss the issue and resolution.

Conclusion

Conclude your project here. You can recap your testing and problems. You should address the "so what" part here to indicate what you ultimately learnt from this project. How has this project increased your knowledge?

Project Video

Upload a video of your project and post the link here.

Project Source Code

References

Acknowledgement

Any acknowledgement that you may wish to provide can be included here.

References Used

List any references used in project.

Appendix

You can list the references you used.

Hardware Interface

In this section, you can describe how your hardware communicates, such as which BUSes used. You can discuss your driver implementation here, such that the Software Design section is isolated to talk about high level workings rather than inner working of your project.

Software Design

Show your software design. For example, if you are designing an MP3 Player, show the tasks that you are using, and what they are doing at a high level. Do not show the details of the code. For example, do not show exact code, but you may show psuedocode and fragments of code. Keep in mind that you are showing DESIGN of your software, not the inner workings of it.

Implementation

This section includes implementation, but again, not the details, just the high level. For example, you can list the steps it takes to communicate over a sensor, or the steps needed to write a page of memory onto SPI Flash. You can include sub-sections for each of your component implementation.

Testing & Technical Challenges

Describe the challenges of your project. What advise would you give yourself or someone else if your project can be started from scratch again? Make a smooth transition to testing section and described what it took to test your project.

Include sub-sections that list out a problem and solution, such as:

Bug/issue name

Discuss the issue and resolution.

Conclusion

Conclude your project here. You can recap your testing and problems. You should address the "so what" part here to indicate what you ultimately learnt from this project. How has this project increased your knowledge?

Project Video

Upload a video of your project and post the link here.

Project Source Code

References

Acknowledgement

Any acknowledgement that you may wish to provide can be included here.

References Used

List any references used in project.

Appendix

You can list the references you used.