Difference between revisions of "F19: Infinity Mirror"
Proj user22 (talk | contribs) |
Proj user22 (talk | contribs) (→Team Deliverables Schedule) |
||
Line 129: | Line 129: | ||
*<font color="black"> Start Soldering of Headers for MP3 Shield & decoder</font> | *<font color="black"> Start Soldering of Headers for MP3 Shield & decoder</font> | ||
*<font color="black"> Environmental setup of Android & Web applications(Niket) </font> | *<font color="black"> Environmental setup of Android & Web applications(Niket) </font> | ||
− | *<font color="black"> Implementation of Gesture Detection </font> | + | *<font color="black"> Implementation of Gesture Detection (Vidushi)</font> |
− | *<font color="black"> Implementation of displaying text on LED Matrix</font> | + | *<font color="black"> Implementation of displaying text on LED Matrix (Ganesh)</font> |
|| In Progress <br> <font color="green"> Completed </font> <br> In Progress <br> In Progress <br> <font color="green"> Completed </font> <br> <font color="green"> Completed </font> | || In Progress <br> <font color="green"> Completed </font> <br> In Progress <br> In Progress <br> <font color="green"> Completed </font> <br> <font color="green"> Completed </font> | ||
|- | |- | ||
Line 137: | Line 137: | ||
*<font color="black"> Implementation of OLED Driver(Niket)</font> | *<font color="black"> Implementation of OLED Driver(Niket)</font> | ||
*<font color="black"> Initialisation the Audio Decoder through SPI communication and read manufacturer ID </font> | *<font color="black"> Initialisation the Audio Decoder through SPI communication and read manufacturer ID </font> | ||
− | *<font color="black"> Implementation of displaying Moving Object on LED Matrix</font> | + | *<font color="black"> Implementation of displaying Moving Object on LED Matrix (Ganesh)</font> |
− | *<font color="black"> Implementation of communication Between two task(gesture_detect & LED_Display) using queues and semaphores</font> | + | *<font color="black"> Implementation of communication Between two task(gesture_detect & LED_Display) using queues and semaphores (Vidushi)</font> |
− | *<font color="black"> Display Gesture Sensor Directions on OLED in a Text </font> | + | *<font color="black"> Display Gesture Sensor Directions on OLED in a Text (Vidushi & Niket)</font> |
*<font color="black"> Read Song from SD Card and send to MP3 Shield </font> | *<font color="black"> Read Song from SD Card and send to MP3 Shield </font> | ||
||<br> <br> <br> <br> <br> <br> <br> | ||<br> <br> <br> <br> <br> <br> <br> | ||
|- | |- | ||
| 5 || 13 Nov 2019 || 19 Nov 2019 || | | 5 || 13 Nov 2019 || 19 Nov 2019 || | ||
− | *<font color="black"> Circuit Simulation in Diptrace/Eagle Tool. </font> | + | *<font color="black"> Circuit Simulation in Diptrace/Eagle Tool. (Aakash)</font> |
*<font color="black"> PCB Layout Design in Diptrace/Eagle Tool. </font> | *<font color="black"> PCB Layout Design in Diptrace/Eagle Tool. </font> | ||
*<font color="black"> Finalize Components placement on PCB. </font> | *<font color="black"> Finalize Components placement on PCB. </font> | ||
− | *<font color="black"> Receive Values from audio spectrum and send to LED_Display task to display on LED Matrix. </font> | + | *<font color="black"> Receive Values from audio spectrum and send to LED_Display task to display on LED Matrix.(Aakash & Ganesh) </font> |
− | *<font color="black"> Interface OLED with onboard buttons to access the list of songs </font> | + | *<font color="black"> Interface OLED with onboard buttons to access the list of songs (Niket)</font> |
*<font color="black"> Send the song data received through SD card to the audio decoder. </font> | *<font color="black"> Send the song data received through SD card to the audio decoder. </font> | ||
− | *<font color="black"> Developing logic for the ball movement and translating hand-gesture control into LED movement.</font> | + | *<font color="black"> Developing logic for the ball movement and translating hand-gesture control into LED movement.(Ganesh)</font> |
||<br> <br> <br> <br> <br> <br> <br> | ||<br> <br> <br> <br> <br> <br> <br> | ||
|- | |- |
Revision as of 22:39, 12 November 2019
Contents
- 1 Infinity Mirror
- 2 Abstract
- 3 Introduction & Objectives
- 4 Team Members & Technical Responsibilities
- 5 Administrative Responsibilities
- 6 Team Deliverables Schedule
- 7 Bill of Materials (General Parts)
- 8 Printed Circuit Board
- 9 Design & Implementation
- 10 Testing & Technical Challenges
- 11 Conclusion
- 12 References
- 13 Testing & Technical Challenges
- 14 Conclusion
- 15 References
Infinity Mirror
Abstract
In this project our main aim to build an embedded system based Music System that also displays 7 bands of frequency spectrum on an (32 x 64) LED display. The MP3 system plays music through a speaker interfaced with the board. It deals with the convergence of various services such as gesture recognition, audio decoding, audio saving and retrieving and audio frequency band visualisation etc. This project consists of 'Audio Codec', 'RGB LED Matrix' and 'HC-05' along with some other onboard features like 'Gesture detection', 'Ambient Light Sensing' and 'OLED Display' with SJ-two Launch pad.
Introduction & Objectives
The key features support by the system are real-time Gesture recognition & trigger actions in player and display audio Spectrum on LED matrix:
1. Determine the actions of air gesture based on the input received or through a manual key selection of songs from the Songs List (In this prototype, search for the response for recognised gesture from the database & perform actions to other peripherals.)
2. In response, retrieve the data from the SD Card & communicate to the audio decoder for audio streaming.
3. Onboard display will show current playing song information and LED Matrix will show audio spectrum patterns using mirroring Visualisation effect.
4. Interacting with HC-05 bluetooth for communicating with Mobile App.
5. A Game related to Audio and Gesture detection - a ball smasher game in which ball will be randomly created on the LED matrix based on the Audio Frequency which will be smashed by collecting Gesture in that particular direction and display the score on the OLED Display.
Project Objectives
1. Audio Codec - Interacting with Audio Codec for getting the sound samples & generating sound signals from the device 2. Gesture Sensor - Detects the Hand Gesture and send the detected gesture to LED Matrix to navigate LED's. 3. SD Card - Audio data or mp3 files will be retrieved from the SD card based on the user selection. 4. Audio Decoder - Intelligently processing the audio data using audio decoder and sent to the LED Matrix to display spectrum patterns. 5. Bluetooth HC-05 - Interfaces the system using Bluetooth to an Android application.
Team Objectives
1. Learn each and every module as much as possible, in order to develop an overall product. 2. Understand the proper use of queues and semaphores in order to send/receive the data between multiple tasks. 3. Document and track all the bugs encountered during development and learn to update git repo after every fix.
Team Members & Technical Responsibilities
- Audio Encoder/Decoder
- ESP8266 Communication Bridge
- Interfacing of LED Matrix
- Interfacing of Gesture Sensors & SD Card
- Android & Web Application
- LCD Interfacing & UI Designing
- Hardware PCB Integration
- Testing
Administrative Responsibilities
Administrative Roles | ||||
---|---|---|---|---|
|
Aakash Chitroda | |||
|
Niket Naidu | |||
|
Vidushi Jain | |||
|
Vidushi Jain | |||
|
Ganesh Ram |
Team Deliverables Schedule
WEEK |
START DATE |
END DATE |
TASK DETAILS |
STATUS |
---|---|---|---|---|
1 | 15 Oct 2019 | 22 Oct 2019 |
|
Completed Completed Completed Completed |
2 | 23 Oct 2019 | 29 Oct 2019 |
|
Completed Completed Completed Completed Completed |
3 | 30 Oct 2019 | 5 Nov 2019 |
|
In Progress Completed In Progress In Progress Completed Completed |
4 | 6 Nov 2019 | 12 Nov 2019 |
|
|
5 | 13 Nov 2019 | 19 Nov 2019 |
|
|
6 | 20 Nov 2019 | 26 Nov 2019 |
|
|
8 | 27 Nov 2019 | 3 Dec 2019 |
|
|
9 | 4 Dec 2019 | 10 Dec 2019 |
|
|
10 | 11 Dec 2019 | 17 Dec 2019 |
|
|
11 | 18 Dec 2019 |
|
Bill of Materials (General Parts)
PART NAME |
PART MODEL & SOURCE |
QUANTITY |
COST PER UNIT (USD) |
---|---|---|---|
|
|
|
|
|
|
| |
|
|
| |
|
|
| |
|
|
| |
|
|
|
|
|
|
|
|
|
|
|
Printed Circuit Board
Design & Implementation
The design section can go over your hardware and software design. Organize this section using sub-sections that go over your design and implementation.
Hardware Design
RGB LED Matrix
A 32 x 64 RGB LED Matrix will be powered up through a 5V/4A DC adapter and is interfaced with the board to display the frequency bands and other relevant messages such as "Next", "Previous" and "Pause". Only the INPUT IDC connector will be used because we are not cascading multiple matrices. The matrix has 2 planes (upper and lower), both of which will be programmed separately. In order to set RGB color data for each pixel in plane 1 (top half of the display) we use R1, G1 and B1 pins and for plane 2 we use R2, G2 and B2. By setting and resetting the CLOCK pulse, color data is set for every pixel in the row. Then the LATCH is set to mark end of the row and reset to move to next row. All of these steps are repeated at very less time intervals so that the human eye perceives it as one complete frame (Persistence of Vision).
Below is the description of the pins:
- R1 -> Sets upper panel's Red data
- G1 -> Sets upper panel's Green data
- B1 -> Sets upper panel's Blue data
- R2 -> Sets lower panel's Red data
- G2 -> Sets lower panel's Green data
- B2 -> Sets lower panel's Blue data
- A -> Sets row bit 0
- B -> Sets row bit 1
- C -> Sets row bit 2
- D -> Sets row bit 3
- CLK (Clock) -> Set to access each pixel
- LAT (Latch) -> Set to mark comletion of one row
- nOE (Output Enable) -> Set to switch the LEDs off when transitioning from one row to the next
- GND -> Ground pins to be connected with board's GND.
Hardware Interface
In this section, you can describe how your hardware communicates, such as which BUSes used. You can discuss your driver implementation here, such that the Software Design section is isolated to talk about high level workings rather than inner working of your project.
Software Design
Show your software design. For example, if you are designing an MP3 Player, show the tasks that you are using, and what they are doing at a high level. Do not show the details of the code. For example, do not show exact code, but you may show psuedocode and fragments of code. Keep in mind that you are showing DESIGN of your software, not the inner workings of it.
Implementation
This section includes implementation, but again, not the details, just the high level. For example, you can list the steps it takes to communicate over a sensor, or the steps needed to write a page of memory onto SPI Flash. You can include sub-sections for each of your component implementation.
Testing & Technical Challenges
Describe the challenges of your project. What advise would you give yourself or someone else if your project can be started from scratch again? Make a smooth transition to testing section and described what it took to test your project.
Include sub-sections that list out a problem and solution, such as:
Bug/issue name
Discuss the issue and resolution.
Conclusion
Conclude your project here. You can recap your testing and problems. You should address the "so what" part here to indicate what you ultimately learnt from this project. How has this project increased your knowledge?
Project Video
Upload a video of your project and post the link here.
Project Source Code
- Sourceforge Source Code Link
- Git Project Link: [1]
References
Acknowledgement
Any acknowledgement that you may wish to provide can be included here.
References Used
List any references used in project.
Appendix
You can list the references you used.
Hardware Interface
In this section, you can describe how your hardware communicates, such as which BUSes used. You can discuss your driver implementation here, such that the Software Design section is isolated to talk about high level workings rather than inner working of your project.
Software Design
Show your software design. For example, if you are designing an MP3 Player, show the tasks that you are using, and what they are doing at a high level. Do not show the details of the code. For example, do not show exact code, but you may show psuedocode and fragments of code. Keep in mind that you are showing DESIGN of your software, not the inner workings of it.
Implementation
This section includes implementation, but again, not the details, just the high level. For example, you can list the steps it takes to communicate over a sensor, or the steps needed to write a page of memory onto SPI Flash. You can include sub-sections for each of your component implementation.
Testing & Technical Challenges
Describe the challenges of your project. What advise would you give yourself or someone else if your project can be started from scratch again? Make a smooth transition to testing section and described what it took to test your project.
Include sub-sections that list out a problem and solution, such as:
Bug/issue name
Discuss the issue and resolution.
Conclusion
Conclude your project here. You can recap your testing and problems. You should address the "so what" part here to indicate what you ultimately learnt from this project. How has this project increased your knowledge?
Project Video
Upload a video of your project and post the link here.
Project Source Code
References
Acknowledgement
Any acknowledgement that you may wish to provide can be included here.
References Used
List any references used in project.
Appendix
You can list the references you used.