User:SJSU MSEE Team CLEAN-TECH

From Embedded Systems Learning Academy
Revision as of 06:31, 26 October 2017 by Rgdrumer (talk | contribs) (Created page with "=== Grading Criteria === <font color="green"> * How well is Software & Hardware Design described? * How well can this report be used to reproduce this project? * Code Quali...")

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

Grading Criteria

  • How well is Software & Hardware Design described?
  • How well can this report be used to reproduce this project?
  • Code Quality
  • Overall Report Quality:
    • Software Block Diagrams
    • Hardware Block Diagrams
      Schematic Quality
    • Quality of technical challenges and solutions adopted.

Project Title

IOT Applications in Hybrid Power Generation and Solar Pump Operation

Abstract

This section should be a couple lines to describe what your project does.

Objectives & Introduction

Show list of your objectives. This section includes the high level details of your project. You can write about the various sensors or peripherals you used to get your project completed.

Team Members & Responsibilities

  • Motor Controller
    • Rajul Gupta
    • Sagar Shah
  • PCB Design
    • Rajul

Schedule

Legend:

Major Feature milestone , CAN Master Controller , Sensor & IO Controller , Android Controller, Motor Controller , Geo , Team Goal

Week# Date Planned Task Actual Status
1 9/23/2017
  • Decide roles for each team member
  • Read FY16 project reports and understand requirements
  • Setup Gitlab project readme
  • Ordered CAN Tranceivers and get R/C car
  • Team roles are decided and module owners are assigned
  • Gitlab project is set
  • Ordered CAN tranceivers and got R/C Car
Complete.
2 9/30/2016
  • Design software architecture for each module and design signal interfaces between modules
  • Setup Wiki Project Report template
  • Design Hardware layout of system components
  • Create component checklist and order required components for individual modules.
  • Setup Gitlab project code for each modules
  • Overall project requirements are understood
  • Wiki Project report setup is done
  • Odered components for Geo controller module
  • Initial commit of project base is done
Complete
3 10/14/2016
  • Major Feature: Implement Free run mode
    • Implement heartbeat messages and initial system bootup sync between modules
    • Inerface the RPLidar to SJ board using UART communication
    • Test LIDAR Interface on SJOne to receive data from sensor
    • Study of Android Toolkit for Bluetooth Adapter connections and APIs
    • Study of HC-05 Bluetooth Module
    • Creating APIs for Start/ STOP button requests to write to output-Stream buffers
    • Creating RFComm SPP Connection socket and the rest of UI for basic operation of Pairing, Connection
    • Checking the AT Command sequence for Bluetooth Operation and Pairing
    • Automating the AT Command sequence for Bluetooth HC-05 operation and Android App
    • Run Motors via commands from SJOne Automatically
    • Order the RPM sensor module for the Drive Controller
    • Design and Order PCB
  • Added hearbeat messages from all controllers to master in can_db and implemented the handling functions in master controller


  • Implemented speed steer command CAN msg transmission and handling in Master controller. Master-Drive integration phase-I


  • Motor: ESC Traxxas XL-5 (Electronic Speed Control) interfaced to SJOne board;
  • Tested and identified duty cycles for different speeds required; Callibration and testing of ESC is over exteral switch at P0.1
    • Ordered RPM sensor
On Track
4 10/21/2016
  • Major Feature: Implement Basic Obstacle Avoidance without maneuver
    • Add all modules CAN messages to DBC file
    • Test steer and speed CAN commands between Master and Motor
    • Implement Obstacle avoidance algorithm
    • Unit Test the obstacle distance and angle obtained and Fine tune the algorithm for minimum error
    • Test whether PWM signal is given to Motor control pin of Lidar before starting scan
    • Configure the CAN communication of sensor readings to the master and other nodes
    • Interface compass module to SJOne board and calibrate the errors
    • find the heading and bearing angle based on mocked checkpoint
    • Test and verify GPS module outdoor to receive valid data and check for errors
    • Calibrate the GPS module error
    • Design and implement the DRIVE_CONTROLLER STEER/SPEED interface with Master (TDD)
    • Install the new RPM sensor module for the Drive Controller
    • Operating motors based on the CAN messages from the Master
  • Added all modules basic CAN messages in can_db
  • Implemented interface files in master controller to handle CAN messages from all nodes to master
  • Implemented Master-Drive controller Integration
  • Implemented Master-Bluetooth controller integration
  • Added all modules basic CAN messages in can_db
  • GPS integrated to SJONE board
  • Added all modules basic CAN messages in can_db
  • MASTER_SPEED_STEER_CMD was defined to use 8-bits for speed control (neutral, forward, and reverse); 9-bits for steer control (straight, left, and right)
  • Designed glue code: DriveManager and hardware interface code: DriveController using TDD (test code in _MOTOR/_cgreen_test/)
  • Got the Traxxas #6520 RPM sensor; installed the same with the slipper clutch; Observed the RPM sensor trigger over an oscilloscope and found the minimum distance of magnet to RPM sensor is not achievable with the stock slipper clutch. Ordered Traxxas #6878 new slipper clutch and ball-bearings
  • Master - Drive Controller Interface implemented and tested over CAN; Check "drive" terminal command on Master controller

Planned
5 10/28/2016
  • Major Feature: Implement maneuvering with Android app data
    • Implement maneuvering algorithm to drive steering angle of the servo
    • Implement maneuvering algorithm to control ESC speed
    • Identify the basic speed(s) at which the car shall move; the min, max and normal forward speeds, and the min and normal reverse speeds
    • Interface the RPM sensor over ADC and validate the readings
    • Writing PID Algorithm for Motor Control
    • Calibrating PID constants according to the Motors
    • Testing the Bluetooth Range and multiple pairing option to establish security of the Master device
    • Test the logic of heading and bearing angle
    • Testing the accuracy of GPS while moving
      |
Planned
6 11/04/2016
  • Major Feature: Implement maneuvering with Android app data
Planned.
7 11/11/2016
  • Major Feature: Implement I/O controls and display
Planned.
8 11/18/2016
  • Major Feature: Implement disgnostics indicators
    • Test when Sensor module is corrupting the CAN bus communication
Planned.
9 11/25/2016
  • Major Feature: Implement advanced design features
Planned.
10 12/1/2016
  • Major Feature: Full feature integration test
Planned
11 12/8/2016
  • Major Feature: Full feature integration test
Planned
12 12/15/2016
  • Update Wiki Complete Report
Planned

Parts List & Cost

Give a simple list of the cost of your project broken down by components. Do not write long stories here.

CAN Communication

DBC File

https://gitlab.com/optimus_prime/optimus/blob/master/_can_dbc/243.dbc

Design & Implementation

The design section can go over your hardware and software design. Organize this section using sub-sections that go over your design and implementation.

Hardware Design

Discuss your hardware design here. Show detailed schematics, and the interface here.

Hardware Interface

In this section, you can describe how your hardware communicates, such as which BUSes used. You can discuss your driver implementation here, such that the Software Design section is isolated to talk about high level workings rather than inner working of your project.

Software Design

Show your software design. For example, if you are designing an MP3 Player, show the tasks that you are using, and what they are doing at a high level. Do not show the details of the code. For example, do not show exact code, but you may show psuedocode and fragments of code. Keep in mind that you are showing DESIGN of your software, not the inner workings of it.

Implementation

This section includes implementation, but again, not the details, just the high level. For example, you can list the steps it takes to communicate over a sensor, or the steps needed to write a page of memory onto SPI Flash. You can include sub-sections for each of your component implementation.

Testing & Technical Challenges

Describe the challenges of your project. What advise would you give yourself or someone else if your project can be started from scratch again? Make a smooth transition to testing section and described what it took to test your project.

Include sub-sections that list out a problem and solution, such as:

<Bug/issue name>

Discuss the issue and resolution.

Conclusion

Conclude your project here. You can recap your testing and problems. You should address the "so what" part here to indicate what you ultimately learnt from this project. How has this project increased your knowledge?

Project Video

Upload a video of your project and post the link here.

Project Source Code

References

Acknowledgement

Any acknowledgement that you may wish to provide can be included here.

References Used

List any references used in project.

Appendix

You can list the references you used.