Difference between revisions of "S19: Lightfury"

From Embedded Systems Learning Academy
Jump to: navigation, search
(Team Members & Responsibilities)
(Team Members & Responsibilities)
Line 17: Line 17:
 
<Team Picture>
 
<Team Picture>
  
Gitlab Project Link - [https://gitlab.com/BPradnya/light-fury]
+
Gitlab Project Link - [LightFury|https://gitlab.com/BPradnya/light-fury]
 
<BR/>
 
<BR/>
  

Revision as of 23:27, 13 March 2019

Project Title

LightFury

Abstract

LightFury is an autonomous electric car that takes GPS location as destination from an Android smartphone application and self-navigates to the provided coordinates. The car uses SJOne boards based on LPC 1758 Micro controllers. This page is a detailed report of the whole project.

Introduction

The project was divided into N modules:

  • Sensor ...
  • Motor..
  • ...
  • Android

Team Members & Responsibilities

<Team Picture>

Gitlab Project Link - [LightFury|https://gitlab.com/BPradnya/light-fury]

<Provide ECU names and members responsible> <One member may participate in more than one ECU>

  • Sensor
    • Link to Gitlab user1
    • Link to Gitlab user2
  • Motor
    • Link to Gitlab user1
    • Link to Gitlab user2
  • Geographical
    • Link to Gitlab user1
    • Link to Gitlab user2
  • Communication Bridge Controller & LCD
    • Link to Gitlab user1
    • Link to Gitlab user2
  • Android Application
    • Link to Gitlab user1
    • Link to Gitlab user2
  • Testing Team
    • Link to Gitlab user1
    • Link to Gitlab user2


Schedule

Week# Start Date End Date Task Status
1 09/15/2017 09/16/2017
  • Read previous projects, gather information and discuss among the group members.
  • Distribute modules to each team member.
Completed
2 09/17/2017 10/03/2017

Parts List & Cost

Item# Part Desciption Vendor Qty Cost
1 RC Car Traxxas 1 $250.00
2 CAN Transceivers MCP2551-I/P Microchip [1] 8 Free Samples

Printed Circuit Board

<Picture and information, including links to your PCB>

CAN Communication

<Talk about your message IDs or communication strategy, such as periodic transmission, MIA management etc.>

Hardware Design

<Show your CAN bus hardware design>

DBC File

<Gitlab link to your DBC file> <You can optionally use an inline image>




Sensor ECU

<Picture and link to Gitlab>

Hardware Design

Software Design

<List the code modules that are being called periodically.>

Technical Challenges

<Bullet or Headings of a module>

Unreliable sonor sensors

<Problem Summary> <Problem Resolution>



Motor ECU

<Picture and link to Gitlab>

Hardware Design

Software Design

<List the code modules that are being called periodically.>

Technical Challenges

<Bullet or Headings of a module>

Unreliable Servo Motors

<Problem Summary> <Problem Resolution>



Geographical Controller

<Picture and link to Gitlab>

Hardware Design

Software Design

<List the code modules that are being called periodically.>

Technical Challenges

<Bullet or Headings of a module>

Unreliable GPS lock

<Problem Summary> <Problem Resolution>



Communication Bridge Controller & LCD

<Picture and link to Gitlab>

Hardware Design

Software Design

<List the code modules that are being called periodically.>

Technical Challenges

<Bullet or Headings of a module>

Insane Bug

<Problem Summary> <Problem Resolution>



Master Module

<Picture and link to Gitlab>

Hardware Design

Software Design

<List the code modules that are being called periodically.>

Technical Challenges

<Bullet or Headings of a module>

Improper Unit Testing

<Problem Summary> <Problem Resolution>



Mobile Application

<Picture and link to Gitlab>

Hardware Design

Software Design

<List the code modules that are being called periodically.>

Technical Challenges

<Bullet or Headings of a module>

Wifi Link Reliability

<Problem Summary> <Problem Resolution>



Conclusion

<Organized summary of the project>

<What did you learn?>

Project Video

Project Source Code

Advise for Future Students

<Bullet points and discussion>

Acknowledgement

References