Difference between revisions of "S17: Interactive Snake and ladder"

From Embedded Systems Learning Academy
Jump to: navigation, search
(Overall System Flow Chart)
(Overall System Flow Chart)
Line 150: Line 150:
 
[[File:snake and ladder-remote.png|300px|thumb|Remote side system flow]]
 
[[File:snake and ladder-remote.png|300px|thumb|Remote side system flow]]
 
[[File:snake and ladder-master 1.png|left|300px|thumb|master side system flow]]
 
[[File:snake and ladder-master 1.png|left|300px|thumb|master side system flow]]
[[File:snake and ladder-master 2.png|center|410px|thumb|master side system flow]]
+
[[File:snake and ladder-master 2.png|center|400px|thumb|master side system flow]]
 
[[File:snake and ladder-master 3.png|right|300px|thumb|master side system flow]]
 
[[File:snake and ladder-master 3.png|right|300px|thumb|master side system flow]]
  

Revision as of 19:53, 16 May 2017

Project Title

Snake and Ladder

Abstract

This project aims to bring the fun and simplicity of snake and ladder game with some new features. It is a snake and ladder game using SJONE board, LCD and 2 wireless remotes. LCD display is connected to the SJONE board will display the game grid. It will also have the multiplayer feature that will allow more than one players to play the game using wireless remotes simultaneously. This project explores a new dimension in the traditional snake game to make it more interesting and challenging.

Objectives & Introduction

This game aims to change the way people think of traditional snake game. It will offer the experience of commercial multilayer games to the player retaining the simplicity of traditional snake game.

  • The major objectives of this project are:
    • To create a snake and ladder game that will have all the functionality of traditional snake and ladder games.
    • Introduce multiplayer functionality in the game that will allow several players to play a game simultaneously. It should be able to give the experience of a real time multiplayer game to the players.
    • To introduce Speech output for events.


Roles & Responsibilities

Schedule

Week Start Date End Date Task Status Actual Completion Date
1 3/21 3/25
  • Requirement analysis
  • Component identification and purchase.
  • Task allocation based on different modules in project
Complete 3/25
2 3/25 3/29
  • Design Hardware schematic
Complete 3/29
3 3/29 4/9
  • PCB design and placing order for fabrication
Complete 4/10
4 3/29 4/8
  • Interface LCD with the SJOne board
  • Project report update on wiki
Complete 4/8
5 3/30 4/14
  • Establish wireless connection between boards using nordic wireless
  • Text to speech interface
  • Project report update on wiki
Complete 4/14
6 4/11 4/20
  • Algorithm design and implementation
  • Identify common data elements
Complete 4/20
7 4/20 4/22
  • Integration of modules and hardware package buildup
Complete 4/22
8 4/23 4/31
  • Integration testing and bug fix
  • Project report update on wiki
Complete 4/31
9 4/26 5/5
  • Extra feature identification and implementation
  • Project report update on wiki
Complete 5/5
10 5/5 5/14
  • Testing and Debugging
  • Project report update on wiki and final presentation
In Progress
11 5/15 5/23
  • Wiki Report completion and Final Demonstration
Plan

Parts List & Cost

Give a simple list of the cost of your project broken down by components. Do not write long stories here.

Design & Implementation

Overall System

  • The overall system is divided into 3 parts:
    • game image display(LCD): the snake and ladder image grid is mounted on the 7 inches LCD screen.
    • wireless SJONE board: the antenna is connected to SJONE board to transmit and receive signal from master. The basic use of the SJONE board with antenna is to through dice.
    • text to speech module: based on the actions performed the audio file gets executed. To make a game more effective and attractive.

All these functionalities work in parallel and have the same priorities.

Overall System Flow Chart

Remote side system flow
master side system flow
master side system flow
master side system flow

Hardware Design

Printed Circuit Board

Schematic Diagram

Below is the schematic diagram for the project. It includes the power supply, interface for LCD controller and text to speech module. CMPE244 S17 SnL Schematic Daigram.JPG

PCB Layout

Below is the PCB layout developed using Eagle PCB and Altium designer.

CMPE244 S17 SnL PCB Layout.JPG

LCD display and RA8875 Driver Board

Hardware Interface

LCD Display
RA8875 driver Pinout
LCD, RA8875 and SJone connection


LCD Display

  • This 7.0" TFT screen has 800x480 pixels, and an LED backlight.
  • The display is supposed to be constantly refreshed, at 60Hz, with a pixel clock, V sync, H sync, etc.
  • This display is operated by RA8875 Driver board.


RA8875 Driver Board

RA8875 is a text/graphic mixed display with 2 layers TFT LCD controller which is a powerful and cheap choice for color display application. It is designed to meet the requirement of middle size TFT module up to 800x480 pixels with characters or 2D graphic application. Embedded 768KB display RAM provides user a flexible solution for display buffer of almost application. RA8875 supports a 2D Block Transfer Engine(BTE) that is compatible with 2D BitBLT function for processing the mass data transfer.

  • Features:
    • Support Text/Graphic Mixed Display Mode.
    • Embedded 768KB DDRAM.
    • Color Depth TFT: 256/65K Colors.
    • Supporting TFT 8/16 bpp Generic RGB Interface.
    • Powerful Block Scrolling Function for Vertical or Horizontal Direction.

Software Design

Flowchart

Code snippet

Wireless SJONE remote

Hardware Interface

SJone wireless remote

Here, in this project we have connected antenna to SJONE board for wireless functionality. Initially all the devices are in OFF state. Hence seven segment display of on the board will show “0” as master sends a command to any of the board, the seven-segment display will show “G0” then we can start to play the game.

This wireless remote functionality is introduced in our project is to roll a dice. Hence for this we have assigned an on-board switch. As soon a switch gets pressed a dice get rolled and random number gets displayed on the display. As Per that the player will move that many positions further.

Here, we have added a “enroll” function. In this, master will broadcast a packet to every user who wants to enter in game. Then user will press a switch and acknowledge master. Hence master will get to know the address of the user and now every user who gets enroll can play the game.

Software Design

Flowchart

Code snippet

Text to Speech Module

In Emic 2 Text-to-Speech(TTS) module we use UART protocol for communication with microcontroller. In this project, UART3 of the Sjone board is used for interface. This module has own commands for the text to speech conversion, voice selection, volume change.

  • The pin configuration for Emic 2 TTS module is:
    • SOUT – UART (RxD3)
    • SIN – UART (TxD3)
    • 5V – 3.3V (on board)
    • GND - GND
  • Its key features of Emic2 text-to-speech are as follows:
    • High-quality speech synthesis for English and Spanish languages.
    • Nine pre-defined voice styles comprising male, female, and child.
    • Dynamic control of speech and voice characteristics, including pitch, speaking rate, and word emphasis.
    • Industry-standard DEC talk text-to-speech synthesizer engine (5.0.E1).
    • on board 3.5mm audio jack

Hardware Interface

Text to speech
Text to speech pinout
Text to speech pin connection





Software Design

Text to speech commands

Algorithm:

  • Initialize the emic2 TTS module to UART3.
  • check function call for TTS module.
  • Select text as per function call and play it on buzzer.

Flowchart

Code Snippet

Implementation

This section includes implementation, but again, not the details, just the high level. For example, you can list the steps it takes to communicate over a sensor, or the steps needed to write a page of memory onto SPI Flash. You can include sub-sections for each of your component implementation.

Testing & Technical Challenges

PCB

  • Below is a list of challenges we faced during PCB designing:
    • For designing the PCB, we use EAGLE software. Which is new for us and that was a challenging task to draw layout.
    • We faced Assembly issues like dry solder on pins. So, we re-soldered the component pins.
    • There was an insufficient bypassing on PCB hence we added required value of bypass capacitor on board.
    • While testing PCB, we find a problem of shorting of a track so we use a multi meter to perform a continuity test and verification on the pins and fixed that.

LCD display

  • The main challenged faced related to display is to print a snake and ladder picture grid. Also, to determine exact coordinates of snake and ladder on grid is one of the challenges. this a tough job but we manage to do that. Tried to achieved high refresh rate on LCD to get real time display effect.

Conclusion

We successfully completed our project of interactive snake and ladder by writing various modules and our mentioned overall objectives of it. We learned a lot about Sjone board and LPC1768 micro controller. we have added extra function in project so that multiple players (more than 2) can play the game simultaneously by just connecting antenna and flashing the code on SJone board. Hence this project increased our knowledge of software and hardware.

Project Video

Upload a video of your project and post the link here.

Project Source Code

References

Acknowledgement

We would like to Thank Preetpal Kang. We used his API's of free RTOS which help us a lot to write a code for each module. The knowledge he has given us about all the interfacing buses like SPI, UART, I2C helped us in using that in our project and will help in near future.

References Used

List any references used in project.

Appendix

You can list the references you used.