Difference between revisions of "S14: Quadcopter"

From Embedded Systems Learning Academy
Jump to: navigation, search
(Schedule)
(Abstract)
Line 14: Line 14:
  
 
== Abstract ==
 
== Abstract ==
This section should be a couple lines to describe what your project does.
+
Our team aims to build a Quadcopter (Quad-rotor helicopter), which is a multi-rotor aerial vehicle that is lifted and propelled by four rotors. The thrust generated by the propellers lifts the Quadcopter while the flight controller system govern the rotor speed for attitude control. A wireless remote control is used to interact with the flight controller system for changing the flight path. Our objective would be todesign and build a flight controller system that stabilizes the flight and accept commands from a hobbyist remote control during its flight.
  
 
== Objectives & Introduction ==
 
== Objectives & Introduction ==

Revision as of 23:49, 28 February 2014

Grading Criteria

  • How well is Software & Hardware Design described?
  • How well can this report be used to reproduce this project?
  • Code Quality
  • Overall Report Quality:
    • Software Block Diagrams
    • Hardware Block Diagrams
      Schematic Quality
    • Quality of technical challenges and solutions adopted.

Quadcopter

Abstract

Our team aims to build a Quadcopter (Quad-rotor helicopter), which is a multi-rotor aerial vehicle that is lifted and propelled by four rotors. The thrust generated by the propellers lifts the Quadcopter while the flight controller system govern the rotor speed for attitude control. A wireless remote control is used to interact with the flight controller system for changing the flight path. Our objective would be todesign and build a flight controller system that stabilizes the flight and accept commands from a hobbyist remote control during its flight.

Objectives & Introduction

Show list of your objectives. This section includes the high level details of your project. You can write about the various sensors or peripherals you used to get your project completed.

Team Members & Responsibilities

  • Team Member 1
    • Driver Development
  • Team Member 2
    • FreeRTOS Software Design
  • Team Member 3
    • Sensor Data Processing

Schedule

Week# Date Task Actual
1 2/28 Order Components and Make a schedule Component Ordering Completed.
2 3/ Components Procurement.
3 3/ Establish communication with all sensors and validate data
4 3/ Establish communication with radio module of remote control
5 3/ Speed control of motors
6 3/ Create tasks and integrate complete code
7 3/ Assemble quadcopter
8 4/1 Initial testing and tweaks
9 4/15 Final Testing

Parts List & Cost

Qty Description Manufacturer Part Number Total Cost
4 4x Electric Speed Controller (ESC) Turnigy Plush 25 $50.00
4 Park 480 Brushless Outrunner 1020kV motor E-Flight EFLM1505 $180.00
1 Inertial measurement unit (IMU) MPU-9150 Sparkfun SEN-11486 $40.00
1 SJOne Board SJSU - $80.00
1 DX6i 6 Channel 2.4Ghz Tx/Rx Remote Control Spektrum DX6i $140.00
1 2500mAH 5C 3S Lipo battery Zippy - $15.97
1 Quadcopter frame HJ MWC - $21.26
Total Cost increasing !

Design & Implementation

The design section can go over your hardware and software design. Organize this section using sub-sections that go over your design and implementation.

Hardware Design

Discuss your hardware design here. Show detailed schematics, and the interface here.

Hardware Interface

In this section, you can describe how your hardware communicates, such as which BUSes used. You can discuss your driver implementation here, such that the Software Design section is isolated to talk about high level workings rather than inner working of your project.

Software Design

Show your software design. For example, if you are designing an MP3 Player, show the tasks that you are using, and what they are doing at a high level. Do not show the details of the code. For example, do not show exact code, but you may show psuedocode and fragments of code. Keep in mind that you are showing DESIGN of your software, not the inner workings of it.

The MPU-9150 consists of a 3-axis accelerometer, 3axis Gyroscope and a 3 axis magnetometer. its a one chip IMU solution with onboard Motion processor for sensor fusion.Though it inherently supports on board Sensor Fusion, the IP is undisclosed. Therefore we used the library for arduino by Pansenti. (https://github.com/Pansenti) The 6 axis sensor fusion (accel+gyro) is done on the MPU and sent to an arduino where the magnetometer data is used for YAW correction. The arduino transmits the orientation data over UART which is recieved by the SJONE for further processing.

For testing, we coded a GUI in python. The code parses the serial data from the arduino and displays the orientation of the IMU in real-time using Vpython.(video and code to be linked).

Implementation

This section includes implementation, but again, not the details, just the high level. For example, you can list the steps it takes to communicate over a sensor, or the steps needed to write a page of memory onto SPI Flash. You can include sub-sections for each of your component implementation.

Testing & Technical Challenges

Describe the challenges of your project. What advise would you give yourself or someone else if your project can be started from scratch again? Make a smooth transition to testing section and described what it took to test your project.

Include sub-sections that list out a problem and solution, such as:

My Issue #1

Discuss the issue and resolution.

Conclusion

Conclude your project here. You can recap your testing and problems. You should address the "so what" part here to indicate what you ultimately learnt from this project. How has this project increased your knowledge?

Project Video

Upload a video of your project and post the link here.

Project Source Code

Send me your zipped source code and I will upload this to SourceForge and link it for you.

References

Acknowledgement

Any acknowledgement that you may wish to provide can be included here.

References Used

List any references used in project.


https://github.com/Pansenti https://code.google.com/p/sf9domahrs/

Appendix

You can list the references you used.