S14: Asset Management and Location System

From Embedded Systems Learning Academy
Revision as of 19:48, 20 May 2014 by Proj user7 (talk | contribs) (Schedule)

Jump to: navigation, search

Grading Criteria

  • How well is Software & Hardware Design described?
  • How well can this report be used to reproduce this project?
  • Code Quality
  • Overall Report Quality:
    • Software Block Diagrams
    • Hardware Block Diagrams
      Schematic Quality
    • Quality of technical challenges and solutions adopted.

S14: Asset Management and Location System

Abstract

The ultimate vision of this project is to develop an asset management and location system to compete with The Tile App. There are two major components to the Tile solution: the tracker and the application. The tracker is small low-power embedded system that can be attached to an object. The application is primarily a user interface that provides visual feedback to guide a user to a specified tag.

Objectives & Introduction

Objectives

  • To track a tile location within 100 meters
  • To add/register tiles to user
  • To remove tiles from user tiles database
  • Display a histogram of tile vicinity

Team Members & Responsibilities

  • Akash Ayare
  • Pardeep Badhan
  • Talha Ilyas

Schedule

Show a simple table or figures that show your scheduled as planned before you started working on the project. Then in another table column, write down the actual schedule so that readers can see the planned vs. actual goals. The point of the schedule is for readers to assess how to pace themselves if they are doing a similar project.

Week Date Planned Actual
1 3/6 Create Wiki page and add the schedule of the project. Wiki page was created and preliminary scheduling was added.
2 3/13 Research on Bluetooth and Zigbee radio technologies. Compared Bluetooth and Zigbee range and power consumption.

Although Zigbee has slightly better power consumption and better range, decision was made to use Bluetooth for the project to keep similarity with Tile project.

3 3/20 Order parts and research RSSI Parts were not ordered mainly due to the number of options available; more research was still needed.

Instead, the team registered with GitLab. Project "lpc1758_freertos" was checked in as the base project. Furthermore, the team trained on Git workflow and branching methodology.

4 3/27 Interface Bluetooth Modules. Ordered Class 1 Bluetooth version 2 modules.
5 4/3 Achieve basic Bluetooth communication. Basic connectivity achieved.

Hercules Setup software was used to connect to the Bluetooth Serial port.

6 4/10 Fetch RSSI value from the Bluetooth module. Discovered there are two ways to fetch the RSSI value. One mode worked better over the other, but it was slower. In a open room, with one of the modes, there wasn't significant change in RSSI value when proximity changed. The second mode provided better distance estimation, but it was slower to fetch RSSI value in this mode.
7 4/17 Experiment how this value changes with proximity. Started interfacing with the Bluetooth module with SJ One Board instead of Hercules.

Also, added a task to receive Bluetooth data and display it on console.

8 4/24 Implement visual indicator (histogram) corresponding to RSSI values. Interfaced LCD screen with SJ One Board.

Added tasks to control the user menu and monitor switches, and user menu infrastructure that:

  • Displayed the menu list to the LCD and selection markers to indicate currently selected menu item
  • Allowed the user to scroll up and down the menu list using the switches
  • Allowed the user to select a menu option
  • Allowed the user to go back to the previous menu
9 5/1 Packaging, battery installation, and testing. Expansion of feature-set Enhanced features:
  1. Added CharDev pointers in LCD and Bluetooth class instead of using the Uart2 and Uart3 directly. This allowed us to switch Uart ports with minimum code changes
  2. Changed switch ID variable names so they are independent of the action associated with the switch
  3. Modified LCD::display to add an option whether to display the selection marker or not
  4. Added "Add Tile" option (not completed yet, "select" action is pending). When "Add Tile" option is selected, the code does Bluetooth inquiry and lists all the devices on the LCD
  5. Enhanced logic to get the Bluetooth into command mode. The function Bluetooth::goToCmdMode makes sure the Bluetooth is in command mode before returning. It does this by issuing "V" command and verifying the received data. After issuing the CMD string ($$$), the trick was to wait few milliseconds
10 5/8 Demo Completed? Problems Encountered?

Parts List & Cost

Item Part Name Part Cost Qty Total Cost
1 LPC1758 SJSU One Board $80 1 $80
2 SparkFun BlueSMiRF Gold] $64.95 2 $209.90
3 SparkFun Bluetooh Mate Gold $64.95 1 $274.85
4 Serial Enabled 16x2 LCD $24.95 1 $299.80

Design & Implementation

The design section can go over your hardware and software design. Organize this section using sub-sections that go over your design and implementation.

Hardware Design

Discuss your hardware design here. Show detailed schematics, and the interface here.

Hardware Interface

SJSU One UART3 is interfaced with the Bluetooth module at 115200 bps with RX and TX queue depth of 1000 elements, respectively using the supplied UART3 driver. The following table depicts the connections:

SJSU One Peripheral
Power 3.3V VCC Bluetooth
Ground GND GND
N/A CTS-I RTS
UART3 TX RX - O
RX TX - O
Power 3.3V VCC LCD
Ground GND GND
UART2 TX RX

Software Design

Show your software design. For example, if you are designing an MP3 Player, show the tasks that you are using, and what they are doing at a high level. Do not show the details of the code. For example, do not show exact code, but you may show psuedocode and fragments of code. Keep in mind that you are showing DESIGN of your software, not the inner workings of it.

Implementation

This section includes implementation, but again, not the details, just the high level. For example, you can list the steps it takes to communicate over a sensor, or the steps needed to write a page of memory onto SPI Flash. You can include sub-sections for each of your component implementation.

Testing & Technical Challenges

Describe the challenges of your project. What advise would you give yourself or someone else if your project can be started from scratch again? Make a smooth transition to testing section and described what it took to test your project.

Include sub-sections that list out a problem and solution, such as:

My Issue #1

Discuss the issue and resolution.

Conclusion

Conclude your project here. You can recap your testing and problems. You should address the "so what" part here to indicate what you ultimately learnt from this project. How has this project increased your knowledge?

Project Video

Upload a video of your project and post the link here.

Project Source Code

Send me your zipped source code and I will upload this to SourceForge and link it for you.

References

Acknowledgement

Any acknowledgement that you may wish to provide can be included here.

References Used

List any references used in project.

Appendix

You can list the references you used.