Difference between revisions of "F21: Space Rage"

From Embedded Systems Learning Academy
Jump to: navigation, search
(Abstract)
(Abstract)
Line 15: Line 15:
  
 
== Abstract ==
 
== Abstract ==
 +
The Tron Light Cycle game is a versus game where two players, in this case one player and
 +
one computer, attempt to have the opponent run into their trail that is left behind as they move. It
 +
is similar to Snake, but the trail left behind is not dependent on any pickups and it is competitive.
 +
The player will be able to move in the cardinal directions, North, East, South, and West, but will
 +
not be able to steer directly behind them to prevent instant defeat.
 +
There will be multiple difficulty levels, with increasing intelligence for the AI, for the player to
 +
progress to, should they beat the opponent. Other various screens that will be included are a
 +
difficulty select main screen and a game over screen.
 +
The display will be a 64 by 64 LED matrix. The player will control the cycle by using a joystick. A
 +
single button will be included to be able to select the difficulty level on the main screen, select
 +
the users color of cycle, and to continue past the Game Over screen. There will be a speaker to
 +
play music and sounds for the game. The volume of the speakers shall be controlled by a touch
 +
sensor to turn the volume up or down.
  
 
== Objectives & Introduction ==
 
== Objectives & Introduction ==

Revision as of 01:58, 21 October 2021

Grading Criteria

  • How well is Software & Hardware Design described?
  • How well can this report be used to reproduce this project?
  • Code Quality
  • Overall Report Quality:
    • Software Block Diagrams
    • Hardware Block Diagrams
      Schematic Quality
    • Quality of technical challenges and solutions adopted.

Project Title

Space Rage

Abstract

The Tron Light Cycle game is a versus game where two players, in this case one player and one computer, attempt to have the opponent run into their trail that is left behind as they move. It is similar to Snake, but the trail left behind is not dependent on any pickups and it is competitive. The player will be able to move in the cardinal directions, North, East, South, and West, but will not be able to steer directly behind them to prevent instant defeat. There will be multiple difficulty levels, with increasing intelligence for the AI, for the player to progress to, should they beat the opponent. Other various screens that will be included are a difficulty select main screen and a game over screen. The display will be a 64 by 64 LED matrix. The player will control the cycle by using a joystick. A single button will be included to be able to select the difficulty level on the main screen, select the users color of cycle, and to continue past the Game Over screen. There will be a speaker to play music and sounds for the game. The volume of the speakers shall be controlled by a touch sensor to turn the volume up or down.

Objectives & Introduction

Show list of your objectives. This section includes the high level details of your project. You can write about the various sensors or peripherals you used to get your project completed.

Team Members & Responsibilities

Jbeardphoto.jpg

Jonathan tran self pic.jpeg

  • Devin Alexander

Schedule

Week# Start Date End Date Task Status
1
  • 10/12/2021
  • 10/13/2021
  • 10/18/2021
  • 10/13/2021
  • Read previous projects, gather information and discuss among the group members
  • Create GitLab repository for project
  • Completed
  • In progress
2
  • 10/19/2021
  • 10/18/2021
  • 10/20/2021
  • 10/24/2021
  • Order LED Matrix
  • Order Joystick, buttons, mp3 decoder
  • Completed
  • In progress
3
  • 10/24/2021
  • 10/30/2021
  • Read and familiarize with LED Matrix Datasheet
    • Light a few pixels
  • Read and familiarize with Joystick and Buttons
  • Read and familiarize with MP3 decoder
  • Not started
  • Not started
  • Not started
  • Not started
4
  • 10/31/2021
  • 11/06/2021
  • Develop graphics driver for LED matrix
  • Implement initial game objects and decide on logic
  • Decide on and draw Player Models
  • Not started
  • Not started
  • Not started
5
  • 11/07/2021
  • 11/13/2021
  • Finalize wiki schedule
  • Order circuit boards components and complete the design for printing
  • Circuit board testing, ensuring proper trace runs and connectivity
  • Order additional accessories if required and finalize hardware specifications (touch sensor)
  • Figure out logic required for second player
  • Finalize controller design
  • Not started
  • Not started
  • Not started
  • Not started
  • Not started
  • Not started
6
  • 11/14/2021
  • 11/20/2021
  • Circuit board and component assembly
  • Integration of circuit boards and microcontroller
  • Game logic finalization
  • Testing and debugging of game logic
  • Figure out AI settings and algorithms
  • Construct both controllers
  • Not started
  • Not started
  • Not started
  • Not started
  • Not started
  • Not started
7
  • 11/21/2021
  • 11/27/2021
  • Integrate game logic code with LED matrix
  • Integrate game sounds with game logic
  • Not started
  • Not started
8
  • 11/28/2021
  • 12/04/2021
  • Finalizing the video game
  • Construct enclosure for LED matrix and microcontroller
  • Finalize and test menu select screen
  • Update the wiki page
  • Not started
  • Not started
  • Not started
  • Not started
9
  • 12/05/2021
  • 12/11/2021
  • Address bugs during testing of integrated system
  • Not started
10
  • 12/12/2021
  • 12/12/2021
  • 12/12/2021
  • 12/12/2021
  • 12/14/2021
  • 12/14/2021
  • 12/14/2021
  • 12/14/2021
  • Final Demo
  • Update Gitlab repo with final code
  • Update test video
  • Update the wiki page
  • Not started
  • Not started
  • Not started
  • In Progress


Parts List & Cost

Give a simple list of the cost of your project broken down by components. Do not write long stories here.

Design & Implementation

The design section can go over your hardware and software design. Organize this section using sub-sections that go over your design and implementation.

Hardware Design

Discuss your hardware design here. Show detailed schematics, and the interface here.

Hardware Interface

In this section, you can describe how your hardware communicates, such as which BUSes used. You can discuss your driver implementation here, such that the Software Design section is isolated to talk about high level workings rather than inner working of your project.

Software Design

Show your software design. For example, if you are designing an MP3 Player, show the tasks that you are using, and what they are doing at a high level. Do not show the details of the code. For example, do not show exact code, but you may show psuedocode and fragments of code. Keep in mind that you are showing DESIGN of your software, not the inner workings of it.

Implementation

This section includes implementation, but again, not the details, just the high level. For example, you can list the steps it takes to communicate over a sensor, or the steps needed to write a page of memory onto SPI Flash. You can include sub-sections for each of your component implementation.

Testing & Technical Challenges

Describe the challenges of your project. What advise would you give yourself or someone else if your project can be started from scratch again? Make a smooth transition to testing section and described what it took to test your project.

Include sub-sections that list out a problem and solution, such as:

<Bug/issue name>

Discuss the issue and resolution.

Conclusion

Conclude your project here. You can recap your testing and problems. You should address the "so what" part here to indicate what you ultimately learnt from this project. How has this project increased your knowledge?

Project Video

Upload a video of your project and post the link here.

Project Source Code

References

Acknowledgement

Any acknowledgement that you may wish to provide can be included here.

References Used

List any references used in project.

Appendix

You can list the references you used.