F20: Space Invaders

From Embedded Systems Learning Academy
Revision as of 23:58, 13 October 2020 by Proj user1 (talk | contribs) (Schedule)

Jump to: navigation, search

Space Invaders

Abstract

Space Invaders is a fixed one person shooter style video game. The player controls a laser cannon by moving it horizontally across the bottom of the screen and firing at the aliens descending toward the cannon from the top of the screen. There are aliens descending towards the cannon and the player's main goal is to defeat an alien and earn points by shooting it with the laser cannon and destroying it. As more aliens are defeated, the aliens' movement speeds up. The alien invasion is declared successful and the game ends when the aliens have successfully reached the bottom. The final score of total kills is projected after the game ends. The mp3 decoder connected to the speaker will play sound effects required.

Objectives & Introduction

Show list of your objectives. This section includes the high level details of your project. You can write about the various sensors or peripherals you used to get your project completed.

Team Members & Responsibilities

Akash Vachhani profilepic.jpg

Profile-Picture.jpeg

  • Akhil Cherukuri

Schedule

Week# Start Date End Date Task Status
1
  • 10/12/2020
  • 10/18/2020
  • Read previous projects, gather information and discuss among the group members.
  • Completed
2
  • 10/19/2020
  • 10/20/2020
  • Acquire parts: LED Matrix, VS1053 Mp3 decoder breakout board by Adafruit
, 2X Analog 2-axis thumb joystick with select button + breakout board

  • In progress
3
  • 03/23/2020
  • 03/23/2020
  • 03/23/2020
  • 03/23/2020
  • 03/23/2020
  • 03/23/2020
  • 03/29/2020
  • 03/29/2020
  • 03/29/2020
  • 03/29/2020
  • 03/29/2020
  • 03/29/2020
  • Motor alignment on wheels from finding min/max throttle and steering threshold of Motor node
  • Integrate WiFi driver into Bridge and Sensor node by setting up access points.
  • Integrate GPS and compass into Geographical node and compare functionality to a real GPS module.
  • Integrate ultrasonic drivers into the Sensor node and define maximum distance..
  • Create a WiFi-connected Android App base project and upload it to the git repo.
  • 3D print shell of RC car.
  • Completed
  • Completed
  • Completed
  • Completed
  • Completed
  • Completed
4
  • 03/30/2020
  • 03/30/2020
  • 03/30/2020
  • 03/30/2020
  • 03/30/2020
  • 03/31/2020
  • 04/05/2020
  • 04/05/2020
  • 04/05/2020
  • 04/05/2020
  • Work on the Electronic speed controller of the RC car to control the motor and servos.
  • Create circuit boards schematics.
  • Integrate Google Maps API into Android App
  • Establish CoAP server and client
  • Establish connection between the LCD and the Driver node
  • Completed
  • Completed
  • Completed
  • Completed
  • Completed
5
  • 04/06/2020
  • 04/06/2020
  • 04/06/2020
  • 04/06/2020
  • 04/06/2020
  • 04/06/2020
  • 04/06/2020
  • 04/06/2020
  • 04/12/2020
  • 04/12/2020
  • 04/12/2020
  • 04/12/2020
  • 04/12/2020
  • 04/12/2020
  • 04/12/2020
  • 04/12/2020
  • Order circuit boards components
  • Assemble components to circuit boards
  • Extensively test circuit boards in two rounds
  • Driver node CAN synchronize, logging, and PCAN dongle test of Sensor node
  • Create RC car base and extra accessories
  • Driver node CAN synchronize, logging, and PCAN dongle test of PID output of the motor node
  • Strip down RC car and mount 3D prints
  • Finish testing and validation of the LCD.
  • Completed
  • Completed
  • Completed
  • Completed
  • Completed
  • Completed
  • Completed
  • Completed
6
  • 04/13/2020
  • 04/13/2020
  • 04/13/2020
  • 04/13/2020
  • 04/19/2020
  • 04/19/2020
  • 04/19/2020
  • 04/19/2020
  • Integrate circuit boards and check proper connections to the components and the microcontrollers.
  • Parse client data(Compass/GPS/Sensor) and display on Android App
  • Driver node test obstacle avoidance algorithm
  • Improve Android application User Interface
  • Completed
  • Completed
  • Completed
  • Completed
7
  • 04/20/2020
  • 04/20/2020
  • 04/20/2020
  • 04/26/2020
  • 04/26/2020
  • 04/26/2020
  • Integrate Driver, Geo, Bridge sensor, and Motor nodes.
  • Check for the corner cases of navigation under various conditions.
  • Check the PCAN dongle reading to test CAN communication between all boards.
  • Completed
  • Completed
  • Completed
8
  • 04/27/2020
  • 04/27/2020
  • 04/27/2020
  • 04/27/2020
  • 05/03/2020
  • 05/03/2020
  • 05/03/2020
  • 05/03/2020
  • Test for the proper outdoor drive.
  • Test for the proper LCD display of information during the outdoor drive.
  • Test for the proper state information communication to the driver.
  • Update the wiki page.
  • Completed
  • Completed
  • Completed
  • Completed
9
  • 05/04/2020
  • 05/04/2020
  • 05/10/2020
  • 05/10/2020
  • Test outdoor drive with corner conditions.
  • Make relevant changes to all the nodes and based on testing results.
  • Completed
  • Completed
10
  • 04/11/2020
  • 05/17/2020
  • Test outdoor drive with corner conditions.
  • Final update of all the nodes and its testing
  • Completed
  • Completed
11
  • 05/18/2020
  • 05/18/2020
  • 05/18/2020
  • 05/18/2020
  • 05/24/2020
  • 05/24/2020
  • 05/24/2020
  • 05/24/2020
  • Final Demo
  • Update Gitlab repo with final code.
  • Update test video.
  • Update the wiki page.
  • Completed
  • Completed
  • Completed
  • Completed


Parts List & Cost

Give a simple list of the cost of your project broken down by components. Do not write long stories here.

Design & Implementation

The design section can go over your hardware and software design. Organize this section using sub-sections that go over your design and implementation.

Hardware Design

Discuss your hardware design here. Show detailed schematics, and the interface here.

Hardware Interface

In this section, you can describe how your hardware communicates, such as which BUSes used. You can discuss your driver implementation here, such that the Software Design section is isolated to talk about high level workings rather than inner working of your project.

Software Design

Show your software design. For example, if you are designing an MP3 Player, show the tasks that you are using, and what they are doing at a high level. Do not show the details of the code. For example, do not show exact code, but you may show psuedocode and fragments of code. Keep in mind that you are showing DESIGN of your software, not the inner workings of it.

Implementation

This section includes implementation, but again, not the details, just the high level. For example, you can list the steps it takes to communicate over a sensor, or the steps needed to write a page of memory onto SPI Flash. You can include sub-sections for each of your component implementation.

Testing & Technical Challenges

Describe the challenges of your project. What advise would you give yourself or someone else if your project can be started from scratch again? Make a smooth transition to testing section and described what it took to test your project.

Include sub-sections that list out a problem and solution, such as:

<Bug/issue name>

Discuss the issue and resolution.

Conclusion

Conclude your project here. You can recap your testing and problems. You should address the "so what" part here to indicate what you ultimately learnt from this project. How has this project increased your knowledge?

Project Video

Upload a video of your project and post the link here.

Project Source Code

References

Acknowledgement

Any acknowledgement that you may wish to provide can be included here.

References Used

List any references used in project.

Appendix

You can list the references you used.