F15: Undergrads++

From Embedded Systems Learning Academy
Revision as of 02:01, 6 December 2015 by 243 user2 (talk | contribs) (Objectives & Introduction)

Jump to: navigation, search

Undergrads++

Abstract

The project is an autonomous car that shall avoid obstacles. The car will consist of five SJ One controllers connected and communicating via one operational CAN bus. Each controller shall be handled by teams of two people per component and integrated to 1 working autonomous car. The Master Controller team shall be responsible for collecting data from the other controllers and guiding the car using high-level logic. The Motor I/O Controller team shall be responsible for the operation of the motors and operation of the LCD display, which will display debugging or current status messages. The Sensor Controller team shall be responsible for collecting data from the sonar sensor and sending the appropriate data. The Geographical Controller team shall be responsible for calculating the orientation of the car. The Bluetooth/Bridge Controller team shall be responsible for the interface to the end user and sending the way-points. All of these five devices shall operate simultaneously and reach the requested destination.

Objectives & Introduction

  • The user shall be able to set a longitude/latitude using an Android app
  • The user shall be able to send a Start command to start the navigation routine
  • The car shall avoid obstacles and navigate appropriately around them
  • The car shall contain sensors in the front and back to go forward and backward without intervention
  • The car shall reach the destination before the battery dies
  • The car shall contain a GPS and compass to calculate the heading, longitude, and latitude
  • The car shall contain a Bluetooth device to receive information from the Android App
  • The car shall contain appropriate sensors to internally calculate the speed of the car
  • The car shall be able to adjust it's speed appropriately when commanded by the Master controller
  • The car shall display appropriate information on the LCD display

Team Members & Responsibilities

Master Controller

  • Marvin Flores
  • Hassan Naveed

Sensor Controller & Finances

  • Arlen Eskandari
  • Onyema Ude

GPS Controller

  • Calvin Lai
  • Jonathon Hongpananon

Motor/LCD Controller

  • Hector Prado-Guerrero
  • Jashan Singh

Bridge/Android Controller

  • Phil Tran
  • Shangming Wong

Parts List & Cost

Item# Part Desciption Vendor Part Number Qty Cost
1 RC Car Amazon.com Traxxas Slash 2WD VXL 58076 1 $339.94
2 +++++ ++++ +++ ++
++
3 CAN Transceiver Texas Instrument SN65HVD232D 5 Sample
4 Assembly Components Amazon.com, Anchor & HSC PCBs, Mechnical & Electical Components NA $++++
5 ++++++++++ ++++++++ ++++++++++++++ 1 $+++
6 Sonar sensor Maxbotix 3 $
7 Sonar sensor Given by Preet LV-MaxSonar-EZ1 MB1010 3 Free
8 Adafruit Tripleaxis Accelerometer+Magnetometer(Compass) Board - LSM303 Adafruit LSM303 1 $20.97
9 LCD Display 1 $
10 1 $

Design & Implementation

The design section can go over your hardware and software design. Organize this section using sub-sections that go over your design and implementation.

CAN Message ID Table

Sl. No Module ID Type/Bits xxxxx Source bits SSS Destination bits DDD Hex value Source Destination
1 Android 001 CRITICAL_ERROR_BUS_OFF 0 0 0 0 0 x x x 0 0 0 0x008 Android

0x010 Master

0x018 Sensor

0x020 GPS

0x028 Motor-LCD

ANY ALL
2 Master 010 ANDROID->MASTER 0 0 0 0 1 0 0 1 0 1 0 0x04A


Android Master
3 Sensor 011 RC_PARAMS 0 0 0 1 0 0 0 1 0 1 0 0x08A


Android Master
4 GPS 100 SET_DEST 0 0 0 1 1 0 0 1 0 1 0 0x0CA


Android Master
5 MOTOR_LCD 101 COORDINATES ANDROID->MASTER 0 0 1 0 0 0 0 1 0 1 0 0x10A


Android Master
6 X X SENSOR_MASTER_REG 0 0 1 0 1 0 1 1 0 1 0 0x14A


Sensor Master
7 X X MASTER_ANDROID_REG 0 0 1 1 0 0 1 0 0 0 1 0x14A


Master Android
8 X X COORDINATES MASTER->ANDROID 0 0 1 1 1 0 1 0 0 0 1 0x1D1


Master Android
9 X X MASTER_COMMANDS-> Motor 0 1 0 0 0 0 1 0 1 0 1 0x215


Master IO_Motor
10 X X MASTER_COMMANDS->SENSOR 0 1 0 0 1 0 1 0 0 1 1 0x253


Master Sensor
11 X X MASTER_COMMANDS_READ-> IO 0 1 0 1 0 0 1 0 1 0 1 0x295


Master IO_Motor
12 X X IO_MOTOR_MASTER_REG 0 1 0 1 1 1 0 1 0 1 0 0x2D5


IO_Motor Master
13 X X MASTER_COMMANDS->GPS 0 1 1 0 0 0 1 0 1 0 0 0x314


Master GPS
14 X X GPS_MASTER_REG 0 1 1 0 1 1 0 0 0 1 0 0x362


GPS Master
15 X X MASTER_COMMANDS_WRITE-> IO 0 1 1 1 0 0 1 0 1 0 1 0x395


Master IO_Motor

Implementation

This section includes implementation, but again, not the details, just the high level. For example, you can list the steps it takes to communicate over a sensor, or the steps needed to write a page of memory onto SPI Flash. You can include sub-sections for each of your component implementation.

Master Controller

Master Controller

  • Marvin Flores
  • Hassan Naveed

Master Controller Team Schedule

Sl. No Start Date End Date Task Status Actual Completion Date
1 10/6/2015 10/13/2015 propose CAN message IDs, data length, and priorities. testing communication between the other boards via CAN bus Complete 10/19/2015
2 10/13/2015 10/20/2015 Process motor and Sensor data. Vehicle should be able to run and stop based on the sensor readings. Incomplete 10/**/2015
3 10/20/2015 10/27/2015 Process GPS data and sends appropriate message to the LCD for display. Incomplete 10/**/2015
4 10/27/2015 11/10/2015 Overall CAN bus system implementation. all boards should be able to communicate properly. Master should be able to send/receive message to/from any module(board.) The master should be able to process the messages accordingly. Incomplete 11/**/2015
5 11/10/2015 11/17/2015 Testing/debugging part 1. Master should be able to receive commands from the Android team and be able execute these commands properly. The master should be able to send commands to the other boards. The vehicle should be running and avoiding obstacles. Incomplete 11/**/2015
6 11/17/2015 11/24/2015 Testing/debugging part 2. Master should be able to request GPS coordinates information from the GPS team and be able to make the car move from origin point to the target point. Incomplete 11/**/2015
7 11/24/2015 12/01/2015 Testing/debugging part 3, Finalizing the project. All messages, commands, and requests are handled accordingly. The vehicle should be avoiding obstacles, and is able to go to the target location. Incomplete 12/**/2015

Hardware Design

Discuss your hardware design here. Show detailed schematics, and the interface here.

Hardware Interface

In this section, you can describe how your hardware communicates, such as which BUSes used. You can discuss your driver implementation here, such that the Software Design section is isolated to talk about high level workings rather than inner working of your project.

Software Design

Show your software design. For example, if you are designing an MP3 Player, show the tasks that you are using, and what they are doing at a high level. Do not show the details of the code. For example, do not show exact code, but you may show psuedocode and fragments of code. Keep in mind that you are showing DESIGN of your software, not the inner workings of it.

Motor I/O Controller

Motor/LCD Controller

  • Hector Prado-Guerrero
  • Jashan Singh

Motor control/LCD Team Schedule

Sl. No Start Date End Date Task Status Actual Completion Date
1 10/06/15 10/13/15 Write and test drivers for the brushless motor In progress 10/**/15
2 10/13/15 10/20/15 Write and test drivers for the LCD Incomplete 10/**/15
3 10/20/15 10/27/15 Interface motor to the rest of the software and get moving under power Incomplete 10/**/15
4 10/27/15 11/03/15 Interface LCD to accept and display CAN messages Incomplete 11/**/15
5 11/03/15 11/10/15 Debugging week 1 Incomplete 11/**/15

Hardware Design

Discuss your hardware design here. Show detailed schematics, and the interface here.

Hardware Interface

In this section, you can describe how your hardware communicates, such as which BUSes used. You can discuss your driver implementation here, such that the Software Design section is isolated to talk about high level workings rather than inner working of your project.

Software Design

Show your software design. For example, if you are designing an MP3 Player, show the tasks that you are using, and what they are doing at a high level. Do not show the details of the code. For example, do not show exact code, but you may show psuedocode and fragments of code. Keep in mind that you are showing DESIGN of your software, not the inner workings of it.

Sensor Controller

Sensor Controller & Finances

  • Arlen Eskandari
  • Onyema Ude

Sensor Controller Team Schedule

Sl. No Start Date End Date Task Status Actual Completion Date
1 10/7/2015 10/14/2015 Ordering the sensors and studying the sensor's datasheet Complete 10/17/2015
2 10/14/2015 10/30/2015 Reading Sensor's data and preparing it to be sent over the CAN bus Complete 10/17/2015
3 10/30/2015 11/7/2015 Normalizing sensor data values and sending it to the Master through CAN bus Complete 11/09/2015
4 10/24/2015 10/30/2015 Implementation with multiple sensors Complete 11/09/2015
5 10/30/2015 11/24/2015 Sending multiple sensor data to the master through CAN bus Complete 11/09/2015
6 10/24/2015 11/25/2015 Optimizing the code Incomplete
7 12/01/2015 12/17/2015 Collaborating with other teams and updating the code as needed Incomplete

Hardware Design

Discuss your hardware design here. Show detailed schematics, and the interface here.

Hardware Interface

In this section, you can describe how your hardware communicates, such as which BUSes used. You can discuss your driver implementation here, such that the Software Design section is isolated to talk about high level workings rather than inner working of your project.

Software Design

Show your software design. For example, if you are designing an MP3 Player, show the tasks that you are using, and what they are doing at a high level. Do not show the details of the code. For example, do not show exact code, but you may show psuedocode and fragments of code. Keep in mind that you are showing DESIGN of your software, not the inner workings of it.

Bluetooth/Bridge Controller

Bridge/Android Controller

  • Phil Tran
  • Shangming Wong

Android/Bluetooth Team Schedule

Sl. No Start Date End Date Task Status Actual Completion Date
1 10/6/2015 10/15/2015 Familiarize ourselves with the Android SDK and Java and Google Maps API Complete/incomplete
2 10/6/2015 10/30/2015 Have a working menu. Incomplete
3 10/10/2015 10/30/2015 Have the phone communicating with the SJOne board using Bluetooth Bee (UART). Incomplete
4 10/16/2015 11/10/2015 Relay CAN Bus messages/tasks. Incomplete
5 10/18/2015 11/15/2015 Be able to input GPS coordinates and have a working map available. Incomplete
6 10/25/2015 11/20/2015 Start and stop commands should be up and running. Test with GPS. Incomplete
7 10/20/2015 11/27/2015 Working sensor readings including speed and collisions. Incomplete
8 11/15/2015 12/01/2015 Extensive testing of the application and its bridge Incomplete

Hardware Design

Discuss your hardware design here. Show detailed schematics, and the interface here.

Hardware Interface

In this section, you can describe how your hardware communicates, such as which BUSes used. You can discuss your driver implementation here, such that the Software Design section is isolated to talk about high level workings rather than inner working of your project.

Software Design

Show your software design. For example, if you are designing an MP3 Player, show the tasks that you are using, and what they are doing at a high level. Do not show the details of the code. For example, do not show exact code, but you may show psuedocode and fragments of code. Keep in mind that you are showing DESIGN of your software, not the inner workings of it.

Geographical Controller

GPS Controller

  • Calvin Lai
  • Jonathon Hongpananon

GPS Controller Team Schedule

Sl. No Start Date End Date Task Status Actual Completion Date
1 09/29/2015 10/06/2015 Order Adafruit Compass and GPS and solder header pins Complete 10/05/2015
2 10/06/2015 10/13/2015 Connect and get minimum UART connection working and interface compass via I2C Complete 10/20/2015
3 10/13/2015 10/20/2015 Design GPS task to parse data and get compass heading info Incomplete 10/xx/2015
4 10/20/2015 10/27/2015 Integrate GPS, SJSU board, and CAN rx/tx task Incomplete 10/xx/2015
5 10/27/2015 11/3/2015 Test Communication with Master Controller and determine final heading using GPS and compass Incomplete 11/xx/2015
6 11/03/2015 11/10/2015 Test and debug (if there are any errors/corner cases) Incomplete 11/xx/2015
7 11/10/2015 11/17/2015 Optimize the code and testing for stability and report. Incomplete 11/xx/2015


Hardware Design

Discuss your hardware design here. Show detailed schematics, and the interface here.

Hardware Interface

In this section, you can describe how your hardware communicates, such as which BUSes used. You can discuss your driver implementation here, such that the Software Design section is isolated to talk about high level workings rather than inner working of your project.

Software Design

Show your software design. For example, if you are designing an MP3 Player, show the tasks that you are using, and what they are doing at a high level. Do not show the details of the code. For example, do not show exact code, but you may show psuedocode and fragments of code. Keep in mind that you are showing DESIGN of your software, not the inner workings of it.

Testing & Technical Challenges

Describe the challenges of your project. What advise would you give yourself or someone else if your project can be started from scratch again? Make a smooth transition to testing section and described what it took to test your project.

Include sub-sections that list out a problem and solution, such as:

Problems Encountered

# Module Issue Resolution Impact
1 (Module(s) involved) (Description) (Our fix) (High/Medium/Low)

Conclusion

Conclude your project here. You can recap your testing and problems. You should address the "so what" part here to indicate what you ultimately learnt from this project. How has this project increased your knowledge?

Project Video

Upload a video of your project and post the link here.

Project Source Code

References

Acknowledgement

Any acknowledgement that you may wish to provide can be included here.

References Used

List any references used in project.

Appendix

You can list the references you used.