Difference between revisions of "F14: Team4-Self Driving Car - AUG"

From Embedded Systems Learning Academy
Jump to: navigation, search
(Project Title : Self Navigating Car)
(Project Title : Self Navigating Car)
Line 12: Line 12:
 
</tr>
 
</tr>
 
</table>
 
</table>
 
The following series of events would take place when the car is powered on: <br>
 
01. The GPS would wait for a satellite fix of at least 3 satellites, which would relay the information to the Android device through its controller over the CAN bus. <br>
 
02. If the user selects the Map mode, he would be required to enter the co-ordinates of the destination visually by dropping a marker on the map.<br>
 
03. The app would compute the checkpoints and distance and feed the information to the on-board communication controller.<br>
 
04. The first checkpoint is sent to the GPS and master controller, which would co-ordinate the events for the motor and sensor controllers. <br>
 
05. Any obstacle detected by the ultrasonic sensors would override the current path and try to avoid the obstacle.<br>
 
06. The master controller would compute the course correction and reconfigure the required controllers once the car has passed the obstacle.<br>
 
07. The IO controller is responsible for monitoring the data on the CAN bus and displaying the information on the mounted LCD panel. The light and battery sensors are also connected to the IO controller, which automatically turn on the headlights and monitor the battery health respectively.<br>
 
08. Start/Stop triggers can be given to the car remotely using the mobile application as well as from the on-board LCD. <br>
 
09. Once the car reaches the first checkpoint, it will request for the second one from the communication controller and pass it over to the master. In this way, the process continues till the car reaches the destination.<br>
 
10. Home mode operates in a similar way but with a fixed destination and the free run mode is pretty much self-explanatory<br>
 
 
<b>Highlights</b><br>
 
01. Self-Navigation with Obstacle avoidance on all sides on the car.<br>
 
02. Google maps interface for location monitoring and destination setting along with checkpoint computation.<br>
 
03. Three modes of operation – Home, Map and Free run.<br>
 
04. Three choices of speed – Slow (8 mph), Normal (10 mph) and Turbo (12 mph).<br>
 
05. Automatic checkpoint detection and request for checkpoint system.<br>
 
06. Headlights using lights sensors and brake lights on the tail.<br>
 
07. Battery health monitoring.<br>
 
08. Visual picturization of sensor data relative the car on the android application.<br>
 
09. Speed gauge and compass needle for easier visualization on the application.<br>
 
10. Kill switch for instant power off.<br>
 
11. Free run mode for remotely controlling the car.<br>
 
  
 
== Abstract ==
 
== Abstract ==

Revision as of 12:02, 19 December 2014

Project Title : Self Navigating Car

This project is aimed at developing a 1/5 RC car with a self-driving capability based on controller interaction over the CAN (Controller Area Network) bus. With the advent of driverless cars, we felt the need to develop a scaled-down version that can maneuver itself through co-ordinates fed by Google maps and correct its course when it sees an obstacle. To achieve this objective, we plan to integrate 6 controllers dedicated to specific roles that can pass messages over a common CAN communication bus. In addition, the prototype would involve an Android mobile application for data monitoring and controlling purpose to keep a track of the car remotely and feed it the required checkpoints to reach its destination. The car would comprise of three modes of operation namely; home, map and free run. In the home mode, the car would be guided to its home destination (which is preset to Boccardo Business center) from its current location. In the map mode, the user can feed in the desired destination through the google maps interface which the car would follow based on the co-ordinates and heading provided by its GPS and compass respectively. The free run mode will convert the mobile phone into a remote device capable of controlling the speed and direction of the car based on the accelerometer and gyroscope enabled on the device. In this way, the user can take control of the car at any given time. Below is the high-level block diagram of the entire system.

Intro.bmp

Abstract

Objective and Scope

Team Members & Responsibilities

Introduction

Schedule

Sensor Team Schedule
Sl. No Start Date End Date Task Status Actual Completion
Date
1 09/14/2014 09/20/2014 Understanding the logic of sensors to be used Completed 09/20/2014
2 09/21/2014 10/04/2014 Writing the codes for the different types of sensors Completed 10/04/2014
3 10/05/2014 10/11/2014 Testing the different sensors for accuracy and placing the order for the one we have selected. Completed 10/11/2014
4 10/12/2014 10/25/2014 Build CAN transceiver and send data to the Master Board Completed 10/25/2014
5 10/26/2014 11/01/2014 Place all the sensors on car and test for obstacle avoidance Completed 10/28/2014
6 11/02/2014 11/14/2014 Work on light and tilt sensors Completed 11/04/2014
7 11/15/2014 12/09/2014 Final testing and debugging Completed 12/19/2014
Motor Team Schedule
Sl. No Start Date End Date Task Status Actual Completion
Date
1 09/14/2014 09/20/2014 Understand the logic of Motor Controller present in the RC Car Completed 09/20/2014
2 09/21/2014 09/27/2014 Replace on-board controller with SJSU One board Completed 09/22/2014
3 09/28/2014 10/04/2014 Drive the DC motor with SJSU One board at different Duty Cycles Completed 09/30/2014
4 10/05/2014 10/11/2014 Test the Servo and DC motor together for moving forward and taking turns Completed 10/09/2014
5 10/12/2014 10/18/2014 Build CAN Transceiver and move the car as per the CAN message received Completed 10/13/2014
6 10/19/2014 10/25/2014 Make arrangement for CAN subscription task Completed 10/25/2014
7 10/26/2014 11/01/2014 Interface encoder and calculate the actual speed at which car is running Completed 10/28/2014
8 11/02/2014 11/08/2014 Make compensation algorithm and make car to move at desired speed Completed 11/04/2014
9 11/09/2014 12/09/2014 Final testing and debugging Completed 12/19/2014
I/O Team Schedule
Sl. No Start Date End Date Task Status Actual Completion
Date
1 09/14/2014 09/20/2014 Search and order GLCD module with touch screen, LEDs for headlights Completed 09/20/2014
2 09/21/2014 10/04/2014 Study of GLCD data frame formats and design GUI Completed 10/03/2014
3 10/05/2014 10/11/2014 Development of GLCD functions including touchscreen handler Completed 10/11/2014
4 10/12/2014 10/25/2014 Setup CAN subscription tasks for communication with Master controller Completed 10/27/2014
5 10/26/2014 11/01/2014 Develop hardware and code for automatic headlight control. Completed 11/01/2014
6 11/02/2014 11/14/2014 Build hardware for switches and write interrupt handlers for the same Completed 11/07/2014
7 11/15/2014 12/09/2014 Mount GLCD, headlights, switches on car and final testing Completed 12/19/2014
Communication Bridge + Android Team Schedule
Sl. No Start Date End Date Task Status Actual Completion
Date
1 09/14/2014 09/20/2014 Google maps API research Completed 09/20/2014
2 09/21/2014 10/04/2014 Mock locations on Google maps and simulate co-ordinates w/o gps Completed 10/04/2014
3 10/05/2014 10/11/2014 Two way Bluetooth communication and setup RTOS tasks Completed 10/11/2014
4 10/12/2014 10/25/2014 Raw GUI for app and setup CAN tasks for Start and Stop commands Completed 10/25/2014
5 10/26/2014 11/09/2014 Integration with GEO module and queue for each subscribed service Completed 11/09/2014
6 11/10/2014 11/16/2014 Incorporate all essential services into Android app and test for response Completed 11/16/2014
7 11/16/2014 11/23/2014 Final setup and changes for all the CAN tasks along with XBee interfacing Completed 11/23/2014
8 11/24/2014 12/01/2014 Testing with GEO module with real-time co-ordinates and plotting way points onto Maps Completed 12/01/2014
9 12/02/2014 12/09/2014 Final Testing and verification of all components on the main field Completed 12/19/2014
GEO Team Schedule
Sl. No Start Date End Date Task Status Actual Completion
Date
1 09/7/2014 09/14/2014 Market research for GPS and Compass Modules Completed 09/14/2014
2 09/14/2014 09/21/2014 Place order / receive the modules Completed 09/20/2014
3 09/21/2014 09/28/2014 Interface GPS with SJ -One board via UART Completed 09/26/2014
4 09/28/2014 10/05/2014 Interface Compass with SJ-One Board via I2C Completed 10/03/2014
5 10/05/2014 10/12/2014 Parsing the GPS data stream Completed 10/11/2014
6 10/12/2014 10/19/2014 Calibration and testing of compass Completed 10/13/2014
7 10/12/2014 10/19/2014 Decide CAN message ID’s and message formats Completed 10/28/2014
8 10/19/2014 10/26/2014 Combining UART and GPS parsing. Create task for GPS Completed 10/25/2014
9 10/19/2014 10/26/2014 Combining compass calibration and i2c interface. Create task for Compass Completed 10/25/2014
10 10/26/2014 11/02/2014 Distance to Destination Calculation and Algorithm Completed 11/02/2014
11 11/03/2014 11/10/2014 Basic CAN communication with Master, IO and Android Completed 11/10/2014
12 11/10/2014 11/17/2014 Synchronization and Data Integrity (Semaphores/Mutex/Critical Section) Completed 11/17/2014
13 11/18/2014 11/25/2014 Final Integration of CAN Framework and Implementation of CAN communication with other modules Completed 11/25/2014
14 11/26/2014 12/09/2014 Testing and debugging on car (Re-Calibration/Bug Fixes) Completed 12/19/2014
Master Team Schedule
Sl. No Start Date End Date Task Status Actual Completion
Date
1 09/7/2014 09/13/2014 Understanding CAN Bus and API's Completed 09/13/2014
2 09/14/2014 09/20/2014 Deciding System Flow Completed 09/20/2014
3 09/21/2014 09/27/2014 Deciding MSG id's for all devices Completed 10/27/2014
4 09/28/2014 10/11/2014 Testing Subscription between 2 devices Completed 10/4/2014
5 09/28/2014 10/11/2014 Making CAN bus hardware to interface all SJOne boards Completed 10/11/2014
6 09/28/2014 10/11/2014 Testing subscription and time sync between all devices Completed 10/11/2014
7 10/12/2014 10/18/2014 Reading sensor data from boards at the subscription rate Completed 10/26/2014
8 10/19/2014 11/1/2014 Algorithm for obstacle avoidance Completed 10/27/2014
9 11/2/2014 11/15/2014 Algorithm for GPS based navigation Completed 11/15/2014
10 11/16/2014 11/22/2014 Initial testing and tweaking of the car Completed 11/22/2014
11 11/23/2014 12/9/2014 Final Testing! Showdown time! Completed 12/19/2014

Parts List & Cost

Qty Description Manufacturer Part Number Total Cost
1 RC Car - - $$$
10 CAN transceivers - - Free
1 GPS module - - $$
1 Magnetometer Module - - $
1 Ultrasonic Sensor - - $$
1 Misc Components - - $
Total Cost INCREASING!!

Backup Parts & cost

Qty Description Manufacturer Part Number Total Cost

Design & Implementation

CAN 11-bit ID Format

MSG DST SRC
5 bits (11-6) 3 bits (5-3) 3 bits (2-0)

Controller ID Table

Controller ID Controller Type
001 Motor Controller
010 Master Controller
011 Sensor Controller
100 GEO Controller
110 Communication Bridge + Android Controller
111 I/O Controller

Controller Communication Table

Master Controller Communication Table
Message Number Message Name (MSG_FUNCTION) Data Layout of Data Sent over CAN (byte[0] = total number of data bytes)
0x082 POWERUP_SYN
NO DATA
0x102 POWERUP_ACK
Msg1 : byte[1]   : (uint8_t)  version
Msg1 : byte[2-3] : (uint16_t) year
Msg1 : byte[4]   : (uint8_t)  month
Msg1 : byte[5]   : (uint8_t)  date
Msg1 : byte[6]   : (uint8_t)  dayofweek
Msg1 : byte[7]   : (uint8_t)  hour
Msg2 : byte[1]   : (uint8_t)  minute
Msg2 : byte[2]   : (uint8_t)  second
0x142 HEARTBEAT
Msg1 : byte[1-2] : (uint16_t) rx_count
Msg1 : byte[3-4] : (uint16_t) rx_bytes
Msg1 : byte[5-6] : (uint16_t) tx_count
Msg1 : byte[7]   : (uint16_t) tx_bytes
Msg2 : byte[1]   : (uint16_t) tx_bytes
0x3CA SPEED_DIR_COMMAND
Msg1 : byte[1]   : (uint8_t)  speed
Msg1 : byte[2]   : (uint8_t)  direction
Msg1 : byte[3]   : (uint8_t)  brake
Motor Controller Communication Table
Message Number Message Name (MSG_FUNCTION) Data Layout of Data Sent over CAN (byte[0] = total number of data bytes)
0x0D1 POWERUP_SYN_ACK
Msg1 : byte[1]   : (uint8_t)  version
0x191 HEARTBEAT_ACK
Msg1 : byte[1-2] : (uint16_t) rx_count
Msg1 : byte[3-4] : (uint16_t) rx_bytes
Msg1 : byte[5-6] : (uint16_t) tx_count
Msg1 : byte[7]   : (uint16_t) tx_bytes
Msg2 : byte[1]   : (uint16_t) tx_bytes
0x341 SPEED_ENCODER_DATA
Msg1 : byte[1]   : (uint8_t)  speed
Msg1 : byte[2]   : (uint8_t)  dir
Msg1 : byte[3]   : (uint8_t)  brake
GEO Controller Communication Table
Message Number Message Name (MSG_FUNCTION) Data Layout of Data Sent over CAN (byte[0] = total number of data bytes)
0x0D4 POWERUP_SYN_ACK
Msg1 : byte[1]   : (uint8_t)  version
0x194 HEARTBEAT_ACK
Msg1 : byte[1-2] : (uint16_t) rx_count
Msg1 : byte[3-4] : (uint16_t) rx_bytes
Msg1 : byte[5-6] : (uint16_t) tx_count
Msg1 : byte[7]   : (uint16_t) tx_bytes
Msg2 : byte[1]   : (uint16_t) tx_bytes
0x384 GEO_HEADING_DATA
Msg1 : byte[1]   : (uint8_t)  current_angle
Msg1 : byte[2]   : (uint8_t)  desired_angle
Msg1 : byte[3]   : (uint8_t)  destination_reached
Msg1 : byte[4]   : (uint8_t)  is_valid
0x484 GEO_LOCATION_DATA
Msg1 : byte[1-4] : (float)    latitude
Msg1 : byte[5-7] : (float)    longitude
Msg2 : byte[1]   : (float)    longitude
Msg2 : byte[2-3] : (uint16_t) dist_to_final_destination
Msg2 : byte[4-5] : (uint16_t) dist_to_next_checkpoint
Msg2 : byte[6]   : (uint8_t)  is_valid
0x2AC CHECKPOINT_REQUEST
Msg1 : byte[1]   : (uint8_t)  checkpoint_num
Communication Bridge + Android Controller Communication Table
Message Number Message Name (MSG_FUNCTION) Data Layout of Data Sent over CAN (byte[0] = total number of data bytes)
0x0D5 POWERUP_SYN_ACK
Msg1 : byte[1]   : (uint8_t)  version
0x195 HEARTBEAT_ACK
Msg1 : byte[1-2] : (uint16_t) rx_count
Msg1 : byte[3-4] : (uint16_t) rx_bytes
Msg1 : byte[5-6] : (uint16_t) tx_count
Msg1 : byte[7]   : (uint16_t) tx_bytes
Msg2 : byte[1]   : (uint16_t) tx_bytes
0x1D5 CAR_PAUSE
NO DATA
0x215 CAR_RESUME
NO DATA
0x425 CHECKPOINT_DATA
Msg1 : byte[1-4] : (float)    latitude
Msg1 : byte[5-7] : (float)    longitude
Msg2 : byte[1]   : (float)    longitude
Msg2 : byte[2-3] : (uint16_t) total_distance
Msg2 : byte[4]   : (uint8_t)  checkpoint_num
Msg2 : byte[5]   : (uint8_t)  is_new_route
Msg2 : byte[6]   : (uint8_t)  is_final_checkpoint
0x2C5 DRIVE_MODE
Msg1 : byte[1]   : (uint8_t)  mode
0x255 FREE_RUN_DIR
Msg1 : byte[1]   : (uint8_t)  speed
Msg1 : byte[2]   : (uint8_t)  turn
Msg1 : byte[3]   : (uint8_t)  direction
Sensor Controller Communication Table
Message Number Message Name (MSG_FUNCTION) Data Layout of Data Sent over CAN (byte[0] = total number of data bytes)
0x0D3 POWERUP_SYN_ACK
Msg1 : byte[1]   : (uint8_t)  version
0x193 HEARTBEAT_ACK
Msg1 : byte[1-2] : (uint16_t) rx_count
Msg1 : byte[3-4] : (uint16_t) rx_bytes
Msg1 : byte[5-6] : (uint16_t) tx_count
Msg1 : byte[7]   : (uint16_t) tx_bytes
Msg2 : byte[1]   : (uint16_t) tx_bytes
0x303 DIST_SENSOR_DATA
Msg1 : byte[1]   : (uint8t)   left
Msg1 : byte[2]   : (uint8t)   middle
Msg1 : byte[3]   : (uint8t)   right
Msg1 : byte[4]   : (uint8t)   back
0x443 OTHER_SENSOR_DATA
Msg1 : byte[1]   : (uint8t)   battery
Msg1 : byte[2]   : (uint8t)   light
I/O Controller Communication Table
Message Number Message Name (MSG_FUNCTION) Data Layout of Data Sent over CAN (byte[0] = total number of data bytes)
0x0D6 POWERUP_SYN_ACK
Msg1 : byte[1]   : (uint8_t) version
0x196 HEARTBEAT_ACK
Msg1 : byte[1-2] : (uint16_t) rx_count
Msg1 : byte[3-4] : (uint16_t) rx_bytes
Msg1 : byte[5-6] : (uint16_t) tx_count
Msg1 : byte[7]   : (uint16_t) tx_bytes
Msg2 : byte[1]   : (uint16_t) tx_bytes
0x1D4 CAR_PAUSE
NO DATA
0x214 CAR_RESUME
NO DATA
0x2C4 DRIVE_MODE
Msg1 : byte[1]   : (uint8_t)  mode

Testing & Technical Challenges

Sl. No Test Case Test Description Result

Challenges and Learning

Future Enhancement

Conclusion

Project Video

Project Source Code

References

Acknowledgement

References Used

  1. Preetpal Kang, Lecture notes of CMPE 243, Computer Engineering, Charles W. Davidson College of Engineering, San Jose State University, Aug-Dec 2014.
  2. en.wikipedia.org/