Difference between revisions of "F13: Quadcopter"

From Embedded Systems Learning Academy
Jump to: navigation, search
(Hardware Design)
(Design & Implementation)
Line 180: Line 180:
  
 
== Design & Implementation ==
 
== Design & Implementation ==
The design section can go over your hardware and software design. Organize this section using sub-sections that go over your design and implementation.
+
 
 +
=== Introduction===
 +
 
 +
[[File:Cmpe240 f13 quadcopter pitchrollyaw.png ]]
 +
 
 +
[[File:Cmpe240 f13 quadcopter stationary.png]]
 +
 
 +
[[File:Cmpe240 f13 quadcopter foward.png]]
 +
 
 +
[[File:Cmpe240 f13 quadcopter yaw.png ]]
  
 
=== Hardware Design ===
 
=== Hardware Design ===

Revision as of 18:25, 7 December 2013

Grading Criteria

  • How well is Software & Hardware Design described?
  • How well can this report be used to reproduce this project?
  • Code Quality
  • Overall Report Quality:
    • Software Block Diagrams
    • Hardware Block Diagrams
      Schematic Quality
    • Quality of technical challenges and solutions adopted.

Quadcopter

Abstract

The Quadcopter is a four rotor remote controlled aircraft. It takes in remote commands from a hobbyest remote control, and achieves steady flight by utilizing a 3 axis accelerometer and a 3 axis gyroscope to determine the current attitude. It then takes the values from the remote control, and current attitude, and determines the needed changes to the motors to achieve the desired flight.

Objectives & Introduction

The objective of this project is to build a remote controlled quadcopter that is capable stable flight. We will control the quadcopter via a Spektrum DX5E hobbyist controller. We will be creating an Inertial Measurement Unit(IMU) using a 3 axis accelerometer and a 3 axis gyroscope. The IMU will communicate with the SJ One Board via I2C. We will be implementing a complementary filter in software to estimate the quadcopter attitude, and will then have a PID control loop in software to generate outputs to the motors.

Team Members & Responsibilities

  • Craig Farless
    • Airframe Design
    • Sensor Design
    • Remote Control Interface Design
    • Flight Controller Software Design

Schedule

Task Projected Completion Date Actual Completion Date Status Notes
Buy Parts 1-Oct 1-Oct Complete
Build frame 8-Oct 8-Oct Complete
Install Sensors 15-Oct 8-Oct Complete
Code I2C i/f to sensors 15-Oct 15-Oct Complete
Code Filters 22-Oct 15-Oct Complete More filtering may be needed
Code accel/gyro conversion to angle 22-Oct 22-Oct Complete
Integrate Power System 22-Oct 22-Oct Complete
Code PWM input 29-Oct 15-Nov Complete Much more difficult than planned
Code cmd translator 29-Oct 20-Nov Complete
Code PID 5-Nov 17-Nov Complete Will continue tuning PID
Code PWM Encode Driver 12-Nov 16-Nov Complete
Integrate Processor with Aircraft 12-Nov 1-Nov Complete
Tether Testing 2D stabilization (pitch, roll) 19-Nov 30-Nov Complete More sensor filtering and PID tuning may be needed
Tether Testing 3D stabilization (pitch, roll, yaw) 26-Nov - - Went directly to Flight Testing
Full Flight Testing 26-Nov 3-Dec Initial Testing More flight testing required
Demo 3-Dec 3-Dec Complete

Parts List & Cost

The table below summarizes the parts used and the cost for the Quadcopter project.

Qty Description Manufacturer Part Number Total Cost
4 Electric Speed Controller (ESC) Castle Creations 010-0125-00 $148.00
4 Park 480 Brushless Outrunner 1020kV motor E-Flight EFLM1505 $180.00
1 Triple Axis Accelerometer Breakout - ADXL345) Sparkfun SEN-09836 $27.95
1 Tri-Axis Gyro Breakout - L3G4200D Sparkfun SEN-10612 $49.95
1 Triple Axis Magnetometer Breakout - HMC5883L Sparkfun SEN-10530 $14.95
1 SJOne Board SJSU - $75.00
1 Logic Level Converter Bi-Directional Sparkfun BOB-12009 $2.95
1 Quad 2 Input Or Gate On-Semiconductor MC14071BCP $2.25
1 DX5E 5 Channel 2.4Ghz Tx/Rx Remote Control Spektrum DX5e $89.99
1 4000mAH 25C 3S Lipo battery Hyperion - $45.00
5 EC5 male and female connector Hobby King - $20.00
1 Black Silicon coated wire 12AWG 1 meter Hobby King - $5.00
1 Red Silicon coated wire 12AWG 1 meter Hobby King - $5.00
1 12x24 Aluminum Treadplate (0.063) Home Depot - $34.78
2 1/2" Aluminum Trim Channel, 4' Home Depot - $22.54
- Misc Nuts and Bolts Home Depot - $30.00
Total Cost $753.36

Design & Implementation

Introduction

Cmpe240 f13 quadcopter pitchrollyaw.png

Cmpe240 f13 quadcopter stationary.png

Cmpe240 f13 quadcopter foward.png

Cmpe240 f13 quadcopter yaw.png

Hardware Design

Discuss your hardware design here. Show detailed schematics, and the interface here.

Cmpe240 f13 quadcopter hw block diagram.png


Cmpe240 f13 quadcopter pwm input.png


Cmpe240 f13 quadcopter or gate pwm in.png

Hardware Interface

In this section, you can describe how your hardware communicates, such as which BUSes used. You can discuss your driver implementation here, such that the Software Design section is isolated to talk about high level workings rather than inner working of your project.

Software Design

Show your software design. For example, if you are designing an MP3 Player, show the tasks that you are using, and what they are doing at a high level. Do not show the details of the code. For example, do not show exact code, but you may show psuedocode and fragments of code. Keep in mind that you are showing DESIGN of your software, not the inner workings of it.

Cmpe240 f13 quadcopter sw block diagram.png

Implementation

This section includes implementation, but again, not the details, just the high level. For example, you can list the steps it takes to communicate over a sensor, or the steps needed to write a page of memory onto SPI Flash. You can include sub-sections for each of your component implementation.

Testing & Technical Challenges

Describe the challenges of your project. What advise would you give yourself or someone else if your project can be started from scratch again? Make a smooth transition to testing section and described what it took to test your project.

Include sub-sections that list out a problem and solution, such as:

Wifi Connection Issues

Many wifi connection issues were encountered. To solve this problem, a dedicated task was created to re-connect to wifi if the connection was ever lost.

Conclusion

Conclude your project here. You can recap your testing and problems. You should address the "so what" part here to indicate what you ultimately learnt from this project. How has this project increased your knowledge?

Project Video

Upload a video of your project and post the link here.

Project Source Code

Send me your zipped source code and I will upload this to SourceForge and link it for you.

References

Acknowledgement

Any acknowledgement that you may wish to provide can be included here.

References Used

List any references used in project.

Appendix

You can list the references you used.