S24: Team Zero
Contents
Project Title
TEAM ZERO
Abstract
Team Zero's Self driving RC car, as the name states, is an autonomous vehicle designed to navigate to a given specified destination successfully, avoiding obstacles along its way. The car's infrastructure is built upon four key components: the Driver, Sensor and Bridge, Geo, and Motor nodes, which communicate internally via a CAN Bus and with the user via a mobile app. The vehicle continuously senses and processes all the information from these nodes to make decisions to ensure it stays on course and reaches its destination. It is built on a hobby-grade RC car chassis, modified with the necessary components and adjustments to fulfill its primary objectives of autonomous navigation and obstacle avoidance.
Introduction
The project was divided into N modules:
- Geographical Controller and LCD
- Motor Controller
- Sensor-Bridge Controller
- Driver Controller
- Mobile Application
Team Members & Responsibilities
Gitlab Project Link - [1]
Cody Ourique [2]
- Geo controller
- Compass,GPS and LCD interfacing
- Hardware design, development and mounting
- LCD modules
- Unit Testing
Anusha Arunnandi [3]
- Bridge-Sensor controller
- Ultrasonic range finder and bluetooth interfacing
- Web application
- Unit Testing
Chaitanya Battula [4]
- Driver controller
- Motor controller
- RPM sensor, ESC, and servo motor interfacing
- Unit Testing
Rohit Duvvuru [5]
- Unit Testing
Schedule
Week# | Start Date | End Date | Task | Status |
---|---|---|---|---|
1 | 03/03/2024 | 03/09/2024 |
|
Completed |
2 | 03/10/2024 | 03/16/2024 |
|
|
3 | 03/17/2024 | 03/23/2024 |
|
|
4 | 03/24/2024 | 03/30/2024 |
|
|
5 | 03/31/2024 | 04/06/2024 |
|
|
6 | 04/07/2024 | 04/13/2024 | ||
7 | 04/14/2024 | 04/20/2024 | ||
8 | 04/21/2024 | 04/27/2024 |
Parts List & Cost
Item# | Part Desciption | Vendor | Qty | Cost |
---|---|---|---|---|
1 | RC car | Traxxas [6] | 1 | $239.95 |
2 | RPM sensor | Traxxas [7] | 1 | $12.00 |
3 | GPS Breakout Board | Adafruit [8] | 1 | $54.95 |
4 | PCB prototype circuit board | A1 Cables N PCBs [9] | 1 | $8.57 |
5 | Plexiglass | Lesnlok [10] | 1 | $9.98 |
6 | Wireless bluetooth RF transceiver | HiLetgo [11] | 1 | $9.95 |
7 | Compass | Adafruit [12] | 1 | $5.95 |
8 | Ultrasonic range finder | Adafruit [13] | 4 | $114.00 |
8 | Potentiometer | Amazon [14] | 1 | $9.99 |
8 | 2 Pack 15000mAh power bank | Amazon [15] | 1 | $19.99 |
8 | GPS Antenna Mount | Honbay [16] | 2 | $7.29 |
8 | I2C Qwiic Cable Kit | Amazon [17] | 1 | $9.99 |
8 | Black Foam Padding | Amazon [18] | 1 | $11.99 |
8 | Traxxas 6537 Wire Retainers | Amazon [19] | 1 | $6.95 |
8 | USB Micro-B Breakout Board | Adafruit [20] | 1 | $4.88 |
8 | 24 awg Wire Solid Core | Amazon [21] | 1 | $14.99 |
8 | ELEGOO 6PCS 170 tie-Points Mini Breadboard | Amazon [22] | 1 | $6.98 |
8 | GPS Antenna | Amazon [23] | 1 | $10.99 |
8 | Standoffs | Amazon [24] | 1 | $22.96 |
8 | Breadboard Wires | Amazon [25] | 1 | $5.97 |
8 | 3/16 inch fiberglass rod | TAP plastics | 1 | $5.11 |
Printed Circuit Board
<Picture and information, including links to your PCB>
CAN Communication
<Talk about your message IDs or communication strategy, such as periodic transmission, MIA management etc.>
Hardware Design
<Show your CAN bus hardware design>
DBC File
<Gitlab link to your DBC file> <You can optionally use an inline image>
Sensor ECU
<Picture and link to Gitlab>
Hardware Design
Software Design
<List the code modules that are being called periodically.>
Technical Challenges
< List of problems and their detailed resolutions>
Motor ECU
<Picture and link to Gitlab>
Hardware Design
Software Design
<List the code modules that are being called periodically.>
Technical Challenges
< List of problems and their detailed resolutions>
Geographical Controller
<Picture and link to Gitlab>
Hardware Design
Software Design
<List the code modules that are being called periodically.>
Technical Challenges
< List of problems and their detailed resolutions>
Communication Bridge Controller & LCD
<Picture and link to Gitlab>
The HC-05 Bluetooth module is a widely used and versatile wireless communication module that enables Bluetooth connectivity using its Serial Port Protocol. Key Features HC-05 Bluetooth Module:
Bluetooth Standard:
The HC-05 Bluetooth module operates on Bluetooth version 2.0 + EDR (Enhanced Data Rate), supporting reliable and efficient wireless communication.
Operating Modes:
The module can operate in both Master and Slave modes. In Slave mode, it can pair with other Bluetooth devices, while in Master mode, it can initiate connections.
Communication Range:
The HC-05 is classified as a Class 2 Bluetooth device, providing a communication range of approximately 10 meters (33 feet). This makes it suitable for short to medium-range applications.
Serial Communication:
It communicates with other devices using a serial communication interface, making it compatible with microcontrollers like Arduino. The module typically supports standard baud rates like 9600 bps.
AT Command Configuration:
The HC-05 Bluetooth module can be configured using AT commands, allowing users to customize various parameters such as the device name, pairing code, and operating mode.
Voltage Compatibility:
The module operates within a voltage range of 3.6V to 6V, making it compatible with a variety of power sources.
Security Features:
The HC-05 supports basic security features, including the ability to set a PIN code for pairing and configuring security modes.
LED Indicator:
Many HC-05 modules have an onboard LED indicator that provides visual feedback on the pairing status and communication activity.
Hardware Design
Software Design
<List the code modules that are being called periodically.>
Technical Challenges
< List of problems and their detailed resolutions>
Master Module
<Picture and link to Gitlab>
Hardware Design
Software Design
<List the code modules that are being called periodically.>
Technical Challenges
< List of problems and their detailed resolutions>
Mobile Application
<Picture and link to Gitlab>
Hardware Design
Software Design
<List the code modules that are being called periodically.>
Technical Challenges
< List of problems and their detailed resolutions>
Conclusion
<Organized summary of the project>
<What did you learn?>
Project Video
Project Source Code
Advise for Future Students
<Bullet points and discussion>