F22: xGameCreate

From Embedded Systems Learning Academy
Revision as of 17:50, 9 December 2022 by Proj user6 (talk | contribs) (Design & Implementation)

Jump to: navigation, search

Grading Criteria

  • How well is Software & Hardware Design described?
  • How well can this report be used to reproduce this project?
  • Code Quality
  • Overall Report Quality:
    • Software Block Diagrams
    • Hardware Block Diagrams
      Schematic Quality
    • Quality of technical challenges and solutions adopted.

Whack-a-mole

Abtract

Whac-a-Mole is a fun arcade game in which the player hits plastic moles with a hammer as soon as it appears out of their hole, to score points. We will be recreating the same old game with some modifications. Instead of plastic moles and a hammer, we will be using a LED Matrix to display mole-like characters and touch sensors to imitate the hammer. The scoring will be based on the no of moles you hit and how accurately you hit. We will be designing three levels and after each level, the difficulty of the game will rise.

Objectives & Introduction

  • The aim of the game is to hit as many moles as possible as they appear out of the holes
  • There will be three lives and the speed and complexity of the game increase as the score goes up.
  • If you miss a mole you lose a life
  • Based on how many moles you hit your score will increase.
  • The LED matrix is used to create the 12-mole-hole-like animation and the moles appear randomly in some holes.
  • ITO-coated PET is used for receiving the touch input (hitting the mole).
  • A speaker is used to play background music, and sound clips when you hit a mole.

Team Members & Technical Responsibilities

  • Stephen Oneto
    • Graphics Driver Implementation
    • Game logic design
    • Enclosure design and 3D printing
    • Battery regulatory circuit design
  • Yatish Koul
    • MP3 Driver Implementation
    • Integrating MP3 module with the Game
    • Game logic design

Schedule

Week# Start Date End Date Task Status
1
  • 10/13/2022
  • 10/22/2022
  • Read Past projects to get some design ideas
  • Finalize our choice of game
  • Game Design
  • Confirm functionalities of the game
  • Decide the parts & material for our project
  • Completed
  • Completed
  • Completed
  • Completed
  • Completed
2
  • 10/23/2022
  • 10/29/2022
  • Create a project Wiki page
  • Study previous projects
  • Order parts
  • Completed
  • Completed
  • Completed
3
  • 10/30/2022
  • 11/5/2022
  • Create Git repository
  • Test whether all the components are working properly
  • Read and familiarize with the datasheets of the components
  • Completed
  • Completed
  • Completed
4
  • 10/31/2022
  • 11/12/2022
  • Draw schematic
  • Design game character
  • Develop graphics driver for LED matrix
  • Develop Driver for audio
  • Develop Driver for touch sensors
  • Completed
  • Completed
  • Completed
  • Completed
  • Completed
5
  • 11/13/2022
  • 11/19/2022
  • Test and debug the driver functionality
  • Hardware integration
  • Display game Character on the screen
  • Completed
  • Completed
  • Completed
6
  • 11/20/2022
  • 11/26/2022
  • Game score design
  • Integrate game sound with the background music
  • Completed
  • Completed
7
  • 11/27/2022
  • 12/3/2022
  • Test & bug fix
  • Design Game enclosure
  • In Progress
  • In Progress
8
  • 12/04/2022
  • 12/10/2022
  • Fine-tuning timing and logic
  • Improve and add animations as necessary
  • Finalizing the video game
  • Update the wiki page.
  • In Progress
  • In Progress
  • In Progress
  • In Progress
9
  • 12/11/2022
  • 12/15/2022
  • Prepare for the Final Project DEMO
  • Prepare project video
  • Wrap up Wiki page & Project submission
  • Final demo
  • Not started
  • Not started
  • Not started
  • Not started

Materials List with cost

Part Name Part Model & Source Quantity Cost Per Unit (USD)
  • Micro-Controller SJ2 Board
  • SJ2 Board (Purchased from Preet Kang)
  • 1
  • 50.00
  • RGB LED MATRIX
  • 64X64 RGB - 2.5mm Pitch
  • 1
  • 54.95
  • Power Supply
  • Universal AC Adapter
  • 1
  • 11.99
  • ITO Coated Pet Plastic
  • ITO (100mm X 200mm)
  • 2
  • 20.00
  • Touch Sensor Breakout
  • 12-Key Capacitive Touch Sensor Breakout
  • 1
  • 7.95
  • Speaker
  • 3" Diameter-4Ohm 3 Watt
  • 1
  • 1.95
  • Audio Decoding Player Module
  • Hiletgo MP3 Decode Module
  • 1
  • 6.49

Design & Implementation

Schematic

Touch Breakout Board

Hardware Design

The system is built on the SJ2 development board. A 64*64 LED matrix, a touch breakout board, and an MP3 decoder are interfaced with the SJ2 board. The LED matrix screen has a top rectangle to display the score and lives. The remaining portion is divided into 12(4*3) rectangles depicting 12-mole holes. Each of the 12 holes is covered with an ITO-coated flexible transparent sheet. Each of the ITO sheets is connected to the touch sensor breakout board through wires. The system is designed to operate on a battery. The entire system is enclosed in a 3D-printed enclosure.

Capacitive touch breakout

Touch Breakout Board

We used a MPR121 12-channel capacitive touch sensor breakout board. It supports I2C and can be configured for different levels of sensitivity. The 12 touch sensor pins are connected to 12 ITO films which are placed on top of the LED matrix. When a touch is detected an interrupt will be generated. The status of the 12 sensors is then verified one by one in order to determine which pin is touched.

LED Matrix

Touch Breakout Board

mp3 module

Touch Breakout Board

Hardware Interface

Touch Sensor Driver

LED matrix Driver

Audio Driver

Software Design

Game Logic

Show your software design. For example, if you are designing an MP3 Player, show the tasks that you are using, and what they are doing at a high level. Do not show the details of the code. For example, do not show exact code, but you may show psuedocode and fragments of code. Keep in mind that you are showing DESIGN of your software, not the inner workings of it.

This section includes implementation, but again, not the details, just the high level. For example, you can list the steps it takes to communicate over a sensor, or the steps needed to write a page of memory onto SPI Flash. You can include sub-sections for each of your component implementation.

Testing & Technical Challenges

Describe the challenges of your project. What advise would you give yourself or someone else if your project can be started from scratch again? Make a smooth transition to testing section and described what it took to test your project.

Include sub-sections that list out a problem and solution, such as:

<Bug/issue name>

Discuss the issue and resolution.

Conclusion

Conclude your project here. You can recap your testing and problems. You should address the "so what" part here to indicate what you ultimately learnt from this project. How has this project increased your knowledge?

Project Video

Upload a video of your project and post the link here.

Project Source Code

References

Acknowledgement

Any acknowledgement that you may wish to provide can be included here.

References Used

List any references used in project.

Appendix

You can list the references you used.