S16: Motion Copy Bot

From Embedded Systems Learning Academy
Revision as of 23:58, 8 May 2016 by Proj user5 (talk | contribs) (Objectives & Introduction)

Jump to: navigation, search

Grading Criteria

  • How well is Software & Hardware Design described?
  • How well can this report be used to reproduce this project?
  • Code Quality
  • Overall Report Quality:
    • Software Block Diagrams
    • Hardware Block Diagrams
      Schematic Quality
    • Quality of technical challenges and solutions adopted.

Project Title

Motion Copy Bot

Abstract

Motion Copy Bot aims to copy the motion of the user. Robot mimics the direction of the user's movement. The Bot moves only when the user is in motion and stops as soon as the user halts. The user's wearable device communicates with the Bot and co-ordinates its movement. When the Bot detects an obstacle on its path it notifies the user and stops. Upon this alert, the user determines the alternate path for the Bot.

Objectives & Introduction

Project objectives:

  • Wireless Communication between user and Bot using Xbee.
  • Determining direction and movement of the user with the help of Magnetometer and Accelerometer.
  • Controlling the steering and throttle of the Bot.
  • Obstacle Detection using Ultrasonic sensor.

Team Members & Responsibilities

  • Ankita Singhal
    • Wireless communication, Speed and Direction sensor module
  • Manali Deshmukh
    • Hardware Design and assembling, Motor Driver, Obstacle Avoidance
  • Shaurya Jain
    • Hardware Design and assembling, Motor Driver, Obstacle Avoidance
  • Sukriti Choudhary
    • Wireless communication, Speed and Direction sensor module

Schedule

Week# Date Task Actual Status
1 3/18/2016
  • Team discussion on understanding the requirements and deciding on how to proceed with the project.
  • Assigning responsibilities to each team member.
  • Discussed about requirements.
  • Assigned module wise responsibilities.
Completed
2 3/29/2016
  • Finalizing the bill of material.
  • Ordering the components.
  • Finalized the components.
  • Ordered the components.
Completed
3 4/04/2016
  • Hardware Design of Robot assembly and motor driver.
  • Follow up on component procurement.
  • All components received.
  • Initiated Hardware design of robot assembly.
Completed
4 4/11/2016
  • Assembling the parts of Robot and motor driver.
  • Capturing the data from LSM303.
  • All parts of Robot and Motor Driver assembled.
  • Accelerometer and Magnetometer data successfully captured.
Completed
5 4/18/2016
  • Establishing basic wirelesss communication between two SJOne Boards.
  • Interfacing the motor with SJOne board and controlling the speed and direction.
  • Successful transmission of data from one board to another using Xbee.
  • Successfully able to control the motor's direction using SJOne Board.
Completed
6 4/25/2016
  • Testing of wireless transmission for actual data between two nodes.
  • Calibration of linear accelerometer and magnetometer sensors.
  • Interfacing of the obstacle avoidance module.
  • Able to transmit direction and motion from the user node to the slave node via Xbee.
  • Calibrated LSM303 sensor.
  • Slave is able to detect obstacles using Ultrasonic sensor.
Completed
7 5/05/2016
  • Integration of all the modules.
  • Testing and Debugging.
  • Successfully integrated all the modules.
  • Minor issues in copying the motion.
Completed
8 5/12/2016
  • Final testing of the Motion copy Bot.
In Progress

Parts List & Cost

Item# Part Description Vendor Qty Cost
1 SJ One Board (LPC 1758) From Preet 2 $160
2 RC Car Sheldon Hobbyist 1 $110
3 Accelerometer/Magnetometer LSM303 Adafruit 2 $40.00
4 Wireless Module XBee S1 From Preet 2 $0
5 Motor Driver IC From Amazon 1 $7
6 Battery Pack From eBay 1 $17.99
7 Ultra Sonic Sensor From Preet 2 $0

Design & Implementation

The design section can go over your hardware and software design. Organize this section using sub-sections that go over your design and implementation.

Hardware Design

Discuss your hardware design here. Show detailed schematics, and the interface here.

Hardware Interface

In this section, you can describe how your hardware communicates, such as which BUSes used. You can discuss your driver implementation here, such that the Software Design section is isolated to talk about high level workings rather than inner working of your project.

Software Design

Show your software design. For example, if you are designing an MP3 Player, show the tasks that you are using, and what they are doing at a high level. Do not show the details of the code. For example, do not show exact code, but you may show psuedocode and fragments of code. Keep in mind that you are showing DESIGN of your software, not the inner workings of it.

Implementation

This section includes implementation, but again, not the details, just the high level. For example, you can list the steps it takes to communicate over a sensor, or the steps needed to write a page of memory onto SPI Flash. You can include sub-sections for each of your component implementation.

Testing & Technical Challenges

Describe the challenges of your project. What advise would you give yourself or someone else if your project can be started from scratch again? Make a smooth transition to testing section and described what it took to test your project.

Include sub-sections that list out a problem and solution, such as:

My Issue #1

Discuss the issue and resolution.

Conclusion

Conclude your project here. You can recap your testing and problems. You should address the "so what" part here to indicate what you ultimately learnt from this project. How has this project increased your knowledge?

Project Video

Upload a video of your project and post the link here.

Project Source Code

References

Acknowledgement

Any acknowledgement that you may wish to provide can be included here.

References Used

List any references used in project.

Appendix

You can list the references you used.