S15: Hand Gesture Recognition using IR Sensors
Contents
Abstract
The aim of the project is to develop hand gesture recognition system using grid of IR proximity sensors. Hand gestures like pan, thumbs-up, moving hand back and forth, up and down or left and right can be recognized. These gestures can be used to control different devices or can be used in various applications.The system will recognize different hand gestures based on the IR proximity sensor values.
Objectives & Introduction
The idea is to make a 3x3 grid of using IR proximity sensors, and connect them via analog multiplexers to the ADC pins on SJONE board. As we move our hand in front of the sensor grid, the corresponding values of the sensors will change in a specific pattern. We will map this specific change in values to a gesture. Similarly we will be able to map gestures such as swipe left, swipe right, swipe up and swipe down.
IR Sensors- For the project we are using sensors manufactured by Sharp to determine distance from the objects. The sensors have a range from 10 to 80 cm. The analog voltage output varies with the distance of the object, it is 3 Volts when an object is 10 cm away while it is 0.4v when object is 80 cm away. The ideal operating voltage for the sensor is 4.5 to 5.5 volts.
Analog Multiplexers- We are also using 3 Analog 4:1 multiplexers. This is because SJONE board only has 3 ADC pins where as our sensor grid consists of 9 sensors. The GPIO pins of SJONE board will act as select lines to the multiplexers. The select lines will be common to all multiplexers.
Team Members & Responsibilities
- Harita Parekh
- Implementing algorithm for gesture recognition
- Implementation of sensor data filters
- Shruti Rao
- Implementing algorithm for gesture recognition
- Interfacing of sensors, multiplexers and controller
- Sushant Potdar
- Implementation of final sensor grid
- Development of the application module
Schedule
Show a simple table or figures that show your scheduled as planned before you started working on the project. Then in another table column, write down the actual schedule so that readers can see the planned vs. actual goals. The point of the schedule is for readers to assess how to pace themselves if they are doing a similar project.
Week# | Start Date | End Date | Task | Status | Actual Completion Date |
---|---|---|---|---|---|
1 | 3/22/2015 | 3/28/2015 | Research on the sensors, order sensors and multiplexers | Completed | 3/28/2015 |
2 | 3/29/2015 | 4/4/2015 | Read the data sheet for sensors and understand its working. Test multiplexers | Completed | 4/4/2015 |
3 | 4/5/2015 | 4/11/2015 | Interfacing of sensors, multiplexers and controller | Completed | 4/15/2015 |
4 | 4/12/2015 | 4/18/2015 |
|
Ongoing | |
5 | 4/19/2015 | 4/25/2015 |
|
Scheduled | |
6 | 4/26/2015 | 5/2/2015 |
|
Scheduled | |
7 | 5/3/2015 | 5/9/2015 | Testing and bug fixes | Scheduled | |
8 | 5/10/2015 | 5/16/2015 | Testing and final touches | Scheduled | |
9 | 5/25/2015 | 5/25/2015 | Final demo | Scheduled | |
Parts List & Cost
SR# | Component Name | Quantity | Price per component | Total Price |
---|---|---|---|---|
1 | Sharp Distance Measuring Sensor Unit (GP2Y0A21YK0F) | 9 | $14.95 | $134.55 |
2 | STMicroelectronics Dual 4-Channel Analog Multiplexer/Demultiplexer (M74HC4052) | 3 | $ | $ |
3 | SJ-One Board | 1 | $80 | $80 |