S22: Silver Arrow
Contents
Project Title
<Team Name>
Abstract
<2-3 sentence abstract>
Introduction
The project was divided into N modules:
- Sensor ...
- Motor..
- ...
- Android
Team Members & Responsibilities
Pushkar Deodhar LinkedIn
- App development
- Mechanical/Hardware/circuit/PCB designing
Vilas Dhuri LinkedIn\
- Driver Logic
- Hardware and PCB designing
Rishabh Gupta LinkedIn
- Driver Logic
- Wiki page manage
Vivek Tapkir LinkedIn
- Sensor controller
- Communication Bridge Controller
- Hardware Integration
Saharash Shivahre LinkedIn
- Geo controller
- Wiki page manage
Naveena Sura LinkedIn
- Geo controller
- Git repo managment
Daya Modekar LinkedIn
- Motor controller
- Hardware Integration and design
Schedule
Week# | Start Date | End Date | Task | Status |
---|---|---|---|---|
1 | 03/16/2022 | 03/22/2022 |
|
|
2 |
03/23/2022
|
03/29/2022
|
|
|
3 |
03/30/2022
|
03/04/2022
|
|
|
4 |
04/05/2022
|
04/11/2022
|
|
|
5 |
04/12/2022
|
04/18/2022
|
|
|
6 |
04/19/2022
|
04/25/2022
|
|
|
Parts List & Cost
Item# | Part Desciption | Vendor | Qty | Cost |
---|---|---|---|---|
1 | RC Car | Traxxas | 1 | $250.00 |
2 | CAN Transceivers MCP2551-I/P | Microchip [1] | 8 | Free Samples |
Printed Circuit Board
<Picture and information, including links to your PCB>
CAN Communication
<Talk about your message IDs or communication strategy, such as periodic transmission, MIA management etc.>
Hardware Design
<Show your CAN bus hardware design>
DBC File
<Gitlab link to your DBC file> <You can optionally use an inline image>
Sensor ECU
<Picture and link to Gitlab>
Hardware Design
Software Design
<List the code modules that are being called periodically.>
Technical Challenges
< List of problems and their detailed resolutions>
Motor ECU
Hardware Design
Motor Controller Node includes the operational control of the DC motor, Servo motor, Electronic speed control (ESC), and the wheel encoder(RPM Sensor). The job of the motor controller is to control the steering of front wheels at appropriate angles and to spin the rear wheels at speeds commanded by the driver node in order to traverse the RC car to the destination location.The DC motor, servo motor, and ESC(Traxxas ESC XL-05) were provided with the Traxxas RC car. The wheel encoder and the trigger magnet were purchased separately from Traxxas's website.
SJ2 Board Pin | Description |
---|---|
5V | Input power |
3.3V | CAN transceiver power |
PWM2 P2.1 | DC Motor Speed Control |
PWM5 P2.4 | Servo Motor Angle Control |
CAP0 P2.6 | RPM Sensor\Wheel Encoder |
CAN1 TX | CAN Transceiver Tx |
CAN1 RX | CAN Transceiver Rx |
GND | Grounding |
DC Motor and ESC
The DC motor and ESC were provided with RC car. The DC motor is controlled by the ESC using PWM signals which were provided by the motor controller board for forward, neutral, and reverse movements. The ESC is powered ON using a 7.4 LiPo battery. The ESC converts this 7.4V to 6V and provides input to DC Motor.
ESC wires | Description | Wire Color |
---|---|---|
Vout | Output Power (6V) | RED |
GND | Ground | BLACK |
PWM | PWM input from SJ2-Board (P2.1) | WHITE |
The car can be operated at 100Hz in the following 3 modes :
Sport Mode (100% Forward, 100% Brakes, 100% Reverse)
Racing Mode (100% Forward, 100% Brakes, No Reverse)
Training Mode (50% Forward, 100% Brakes, 50% Reverse)
Servo Motor
Servo Wires | Description | Wire Color |
---|---|---|
Vin | Input Voltage (6V) | RED |
GND | Ground | BLACK |
PWM | PWM input from SJ2-Board (P2.4) | WHITE |
The PWM frequency for our Traxxas Servo motor also needed to be 100Hz. An idle (wheel's pointing forward) duty cycle is 15%. The full duty cycle range is [10%, 20%], where [10%, 15%) is the steer left range, and (15%, 20%] is the steer right.
Wheel Encoder
For speed sensing we purchased a Traxxas RPM sensor as it mounted nicely in the gearbox. The RPM sensor works by mounting a magnet to the spur gear and a hall effect sensor fixed to the gearbox. To get the revolutions per second we used Timer2 as an input capture.
RPM Sensor Wires | Description | Wire Color |
---|---|---|
Vin | Input Voltage (6V) | RED |
GND | Ground | BLACK |
Sensor Output | Input Capture to SJ2-Board (P2.6) | WHITE |
Software Design
The motor controller code modules consisted of 3 main parts, which are: 1. PWM drivers and motor logic, 2. RPM/speed sensor, 3. PID controller.
Technical Challenges
- It required some trial and error to get the state machine for the DC motor to transition between forward and backward, and vice versa. Thankfully, other students' papers were available to help us figure out what we needed to accomplish.
- We somehow destroyed the ESC and wanted to replace it. We spent both time and money on this. Make sure you don't short the ESC by mistake!
Geographical Controller
<Picture and link to Gitlab>
Hardware Design
Software Design
<List the code modules that are being called periodically.>
Technical Challenges
< List of problems and their detailed resolutions>
Communication Bridge Controller & LCD
<Picture and link to Gitlab>
Hardware Design
Software Design
<List the code modules that are being called periodically.>
Technical Challenges
< List of problems and their detailed resolutions>
Master Module
<Picture and link to Gitlab>
Hardware Design
Software Design
<List the code modules that are being called periodically.>
Technical Challenges
< List of problems and their detailed resolutions>
Mobile Application
<Picture and link to Gitlab>
Hardware Design
Software Design
<List the code modules that are being called periodically.>
Technical Challenges
< List of problems and their detailed resolutions>
Conclusion
<Organized summary of the project>
<What did you learn?>
Project Video
Project Source Code
Advise for Future Students
<Bullet points and discussion>