S21: (RC)^2

From Embedded Systems Learning Academy
Revision as of 01:03, 7 April 2021 by Proj user10 (talk | contribs) (Project Title)

Jump to: navigation, search

Project Title

(RC)^2



Abstract

<2-3 sentence abstract>

Introduction

The project was divided into N modules:

  • Sensor ...
  • Motor..
  • ...
  • Android

Team Members & Responsibilities

<Team Picture>

Gitlab Project Link - https://gitlab.com/rc-2/sjtwo-c



Schedule

Week# Start Date End Date Task Status
1 03/01/2021 03/07/2021
  • Read previous projects, gather information and discuss among the group members.
  • Distribute modules to each team member.
Complete
2 03/08/2021 03/14/2021
  • Host individual group meetings and review past semester projects for parts to purchase
  • Generate individual meeting notes to set baselines for project team meeting
  • Update to-buy list excel sheet with any parts ordered
  • Set up GitLab for team project
Complete
3 03/15/2021 03/21/2021
  • Setup GitLab for Android Application
  • Design mockups for the Android Application.
  • Interface SJ2 board and the ESP8266:Connecting to a local Wireless Access point
  • Try adding the MQTT Client library and publish and subscribe the first message to/from the server
  • Get distance data from ultrasonic sensors
  • Send ultrasonic sensor data over CAN bus
  • Control RC car motor speed and wheel alignment with SJ2 board
Complete
4 03/22/2021 03/28/2021
  • Solder GPS & compass modules
  • Motor: Control Motor node with Ultrasonic sensor data
  • Master Driver: Basic rules for driving the car
  • Code review before Spring Break
Complete
5 03/29/2021 04/04/2021
  • Geographical: Get compass and GPS data and send over CAN bus
  • Android Application Prototype[1]
  • Master Driver: Add Rules for heading to destination based on GPS/Compass value
  • Set up prototype board for all nodes
  • DBC file review for current system
Complete
6 04/05/2021 04/11/2021
  • Power requirements for PCB design
  • Submit pin-outs for all connected peripherals
  • Integrate ESP-8266 with SJ2 (read from Wi-Fi module)
  • Integrate Google Maps API into Android Application
  • Start on PCB Design
  • Interface OLED for data display
  • Test Run 1: Sensor and Motor Node integration
In Progress
7 04/12/2021 04/18/2021
  • Establish MQTT broker on a cloud
  • Interface with SJ2 using Android Mobile phone (Send and acknowledge coordinates)
  • Finalize Geo node, test for its accuracy
  • Define and test for "ideal" running environment for all nodes, focus on Sensor and Geo node
  • Acceleration/Velocity calculation with using acceleration sensor
  • Send PCB design to a manufacturer
  • Test Run 2: Sensor/Motor/Geo car driving
  • DBC file finalize
To-do
8 04/19/2021 04/25/2021
  • Feature improvement and bug fixes for Android Application and MQTT protocol
  • Test and verify PCB board
  • Power Delivery for the project
  • Master Driver: Add Rule for driving control based on current speed
  • Test Run 3: Find any potential bugs and improvement in the ideal running environment
To-do
9 04/26/2021 05/02/2021
  • Update the DBC for any final changes
  • Test Run 4: Improvement from Test Run 3
  • Update Wiki Report
To-do
10 05/03/2021 05/09/2021
  • Outer casing for (RC)^2
  • Test Run 5: Improvement from Test Run 4
To-do
11 05/10/2021 05/16/2021
  • Test Run 6: Improvement from Test Run 5
To-do
12 05/17/2021 05/23/2021
  • Check for operational bugs
  • Perform final bug fixes for any/all nodes
  • Video for (RC)^2
  • Test Run 7: Improvement from Test Run 6
To-do
13 05/24/2021 05/26/2021
  • Finalize Wiki Report
  • Finalize code and commit to master branch
  • Complete Final Demo
To-do


Parts List & Cost

TODO: Check Drive and add to this table

Item# Part Desciption Vendor Qty Cost
1 RC Car Traxxas 1 $250.00
2 CAN Transceivers MCP2551-I/P Microchip [2] 8 Free Samples


Printed Circuit Board

<Picture and information, including links to your PCB>



CAN Communication

<Talk about your message IDs or communication strategy, such as periodic transmission, MIA management etc.>

Hardware Design

<Show your CAN bus hardware design>

DBC File

Current DBC File




Sensor ECU

<Picture and link to Gitlab>

Hardware Design

Software Design

<List the code modules that are being called periodically.>

Technical Challenges

< List of problems and their detailed resolutions>



Motor ECU

<Picture and link to Gitlab>

Hardware Design

Software Design

<List the code modules that are being called periodically.>

Technical Challenges

< List of problems and their detailed resolutions>



Geographical Controller

<Picture and link to Gitlab>

Hardware Design

Software Design

<List the code modules that are being called periodically.>

Technical Challenges

< List of problems and their detailed resolutions>





Communication Bridge Controller & LCD

<Picture and link to Gitlab>

Hardware Design

Software Design

<List the code modules that are being called periodically.>

Technical Challenges

< List of problems and their detailed resolutions>



Master Module

<Picture and link to Gitlab>

Hardware Design

Software Design

<List the code modules that are being called periodically.>

Technical Challenges

< List of problems and their detailed resolutions>



Mobile Application

<Picture and link to Gitlab>

Hardware Design

Software Design

<List the code modules that are being called periodically.>

Technical Challenges

< List of problems and their detailed resolutions>






Conclusion

<Organized summary of the project>

<What did you learn?>

Project Video

Project Source Code

Advise for Future Students

<Bullet points and discussion>

Acknowledgement

References