S20: Canster Truck
Contents
- 1 CAN-STER TRUCK
- 2 Abstract
- 3 Introduction
- 4 Team Members & Responsibilities
- 5 Administrative Responsibilities
- 6 Schedule
- 7 Bill Of Materials
- 8 Printed Circuit Board
- 9 CAN Communication
- 10 Sensor ECU
- 11 Motor ECU
- 12 Geographical Controller
- 13 Communication Bridge Controller & LCD
- 14 Master Module
- 15 Mobile Application
- 16 Conclusion
CAN-STER TRUCK
Abstract
The CAN-STER Truck Project is an autonomous RC car with CAN Bus interfaced controllers. The development of the RC car's subsystem modules (Interfacing of Ultrasonic Sensor, LIDAR, Bluetooth, GPS and CAN modules) was divided among by six team members. The aim of the project is to develop an autonomous RC Car which can navigate from the source location to a selected destination by avoiding obstacles in its path using sensors and motors.
Introduction
The project was divided into N modules:
- Sensor Controller
- Motor Controller
- Geographical
- Communication Bridge Controller & LCD
- Android Application and Bluetooth
- PCB Hardware Integration
- Testing and Code Review
Team Members & Responsibilities
<Team Picture>
Gitlab Project Link - Can-ster Truck
- Sensors and Bluetooth Module
- Motor Module
- Geographical Module
- GPS:
- COMPASS:
- Communication Bridge Controller & LCD
- Android Application
- Testing Team / Code Reviewers
- Hardware Integration (PCB & 3D Print)
Administrative Responsibilities
- Team Lead - Niket Naidu
- Git Repository Manager - Niket Naidu
- Bill Of Materials Manager - Akhil Cherukuri
- Wiki Report Manager - Akhil Cherukuri
Schedule
Week# | Start Date | End Date | Task | Status |
---|---|---|---|---|
1 | 02/11/2020 | 02/17/2020 |
|
|
2 | 02/18/2020 | 02/24/2020 |
|
|
3 | 02/25/2020 | 03/02/2020 |
|
|
4 | 03/03/2020 | 03/09/2020 |
|
|
5 | 03/10/2020 | 03/16/2020 |
|
|
6 | 03/17/2020 | 03/23/2020 |
|
|
7 | 03/24/2020 | 03/30/2020 |
|
|
8 | 03/31/2020 | 04/06/2020 |
|
|
9 | 04/07/2020 | 04/13/2020 |
|
|
10 | 04/14/2020 | 04/20/2020 |
|
|
11 | 04/21/2020 | 04/27/2020 |
|
|
12 | 04/28/2020 | 05/04/2020 |
|
|
13 | 05/14/2020 | 05/21/2020 |
|
|
Bill Of Materials
Item# | Part Desciption | Part Model & Vendor | Quantity | Cost in USD |
---|---|---|---|---|
1 | Microcontroller Boards | SJ2 LPC 1758 (Purchased from Preet Kang) | 5 | $250.00 |
2 | CAN Transceivers | Waveshare SN65HVD230 | 12 | $54.48 |
3 | RC Car | Traxxas 2WD RTR with 2.4Ghz Radio | 1 | $260.00 |
4 | Lithium-Ion Battery | Traxxas 7600mAh 2S 7.4V 25C iD LiPo Battery Pack | 1 | $75.00 |
5 | Lithium-Ion Battery Charger | Traxxas 2970 EZ-Peak Plus 4-Amp NiMH/LiPo Fast Charger | 1 | $50.00 |
6 | Compass Breakout Board | DFRobot CMPS11 Compass | 1 | $29.99 |
7 | Bluetooth Breakout Board | DSD TECH Bluetooth HC-05 | 1 | $8.49 |
8 | LIDAR Sensor | SEEED STUDIO RPLIDAR A1M8 | 1 | $109.99 |
9 | RPM Sensor | Traxxas 6520 RPM Sensor | 1 | $13.70 |
10 | GPS Breakout Board | 1 | $ | |
11 | GPS Antenna | 1 | $ | |
12 | LCD Display | 4Dsystems 3.2 TFT-LCD ULCD-32PTU | 1 | $79.00 |
13 | Ultrasonic Sensors | 1 (Required:3) | $ | |
14 | Miscellaneous | 1 | $ |
Printed Circuit Board
<Picture and information, including links to your PCB>
CAN Communication
<Talk about your message IDs or communication strategy, such as periodic transmission, MIA management etc.>
Hardware Design
<Show your CAN bus hardware design>
DBC File
<Gitlab link to your DBC file> <You can optionally use an inline image>
Sensor ECU
<Picture and link to Gitlab>
Hardware Design
Software Design
<List the code modules that are being called periodically.>
Technical Challenges
< List of problems and their detailed resolutions>
Motor ECU
<Picture and link to Gitlab>
Hardware Design
Software Design
<List the code modules that are being called periodically.>
Technical Challenges
< List of problems and their detailed resolutions>
Geographical Controller
<Picture and link to Gitlab>
Hardware Design
Software Design
<List the code modules that are being called periodically.>
Technical Challenges
< List of problems and their detailed resolutions>
Communication Bridge Controller & LCD
<Picture and link to Gitlab>
Hardware Design
Software Design
<List the code modules that are being called periodically.>
Technical Challenges
< List of problems and their detailed resolutions>
Master Module
<Picture and link to Gitlab>
Hardware Design
Software Design
<List the code modules that are being called periodically.>
Technical Challenges
< List of problems and their detailed resolutions>
Mobile Application
<Picture and link to Gitlab>
Hardware Design
Software Design
<List the code modules that are being called periodically.>
Technical Challenges
< List of problems and their detailed resolutions>
Conclusion
<Organized summary of the project>
<What did you learn?>
Project Video
Project Source Code
Advise for Future Students
<Bullet points and discussion>
Acknowledgement
=== References ===