S13: Smart Security

From Embedded Systems Learning Academy
Revision as of 19:12, 18 May 2013 by Kevin s13 (talk | contribs) (Hardware Design)

Jump to: navigation, search

Grading Criteria

  • How well is Software & Hardware Design described?
  • How well can this report be used to reproduce this project?
  • Code Quality
  • Overall Report Quality:
    • Software Block Diagrams
    • Hardware Block Diagrams
      Schematic Quality
    • Quality of technical challenges and solutions adopted.

Smart Security

Safety often tends to wary people in various part of the world. Whether or not an individual is living in a neighborhood with high or low crime rates, security have always been a main concern. With the rising crime rates, even in area known to be safe, security companies have been trying to attract customer with their innovative features, but not so attractive pricing. Often the price could range anywhere starting at $1,400 for installation and from $23 a month [1]. Our project is to provide a solution for people who want a home security system, but not have to pay the huge installation cost and monthly fee.

Abstract

Smart Security is a system targeted for home security that continuously monitors movement, when armed. This system will alert the user wirelessly when it detects motion via text message and flash LEDs on the spot to try and scare off the intruder. The whole process can be control using a web based GUI for arming and disarming the system.

Objectives & Introduction

The Smart Security project communicates with the user using wireless connection to alert them of any movement within the proximity of the sensor. A PIR motion sensor is, connected to a LPC1758 microcontroller board, used as a detector to register any movement. A Wifly module, also attached to the LPC, maintain wireless connection to send and receive commands. The user is able to communicate with the board using a web based GUI, designed with Bootstrap, to arm and disarm the system as he/she please. When armed and motion is detected, the board will send commands to alert user using text messages. To prevent spam, users will receive periodic text messages versus one per motion detected.

Our objectives for the project:

  • Interface PIR Sensor with LPC1758 board and register readings
  • Use Wifly to communicate between the board and server
  • Send alerts in the form of email/text messages when movement is detected
  • Setup alarm in the form of flashing LEDs
  • Create an interactive user web interface that handles the control of the sensor
  • Setup connection between the board and server

Team Members & Responsibilities

  • Kevin Deng
    • Interfacing PIR Motion Sensor with LPC1758 Microcontroller
    • Design Web UI
  • Nelson Wong
    • Interface Wifly module with LPC1758
    • Wireless communication

Schedule

WeekPlanned TasksActual Tasks

1

  • Order parts (Wifly, PIR Motion Sensor, etc.)
  • Download documentation for LPC 17xx
  • Familiarize with LPC 17xx
  • Create system block diagram
  • Completed
  • Completed
  • Completed
  • Completed

2

  • Familiarize/Test the ordered parts
  • Interface wifi module with board
  • Write the web server
  • Completed
  • Completed
  • In-Progress

3

  • Test communication between board and server
  • Send out text message from our board
  • Design mobile UI

4

  • Assemble the full system
  • Test system functionality
  • Debug any error
  • Project report

5

  • Finalize project
  • Finalize project report

Parts List & Cost

Item Type Quantity Cost Link
LPC1758
MicroController
1
~$70
Purchased in CMPE127
PIR Motion Sensor
Infrared Sensor
1
$9.95
https://www.sparkfun.com/products/8630
RN-XV Wifly
Wi-fi Module
1
$34.95
https://www.sparkfun.com/products/10822
Paper Mache
Housing
1
$14.95
http://www.beverlys.com/alameda-store.html
Linksys WRT54G
Router
1
$39.99
http://www.amazon.com/Cisco-WRT54G-Cisco-Linksys-Wireless-G-Router/dp/B00007KDVI
5V Battery Pack
Power Supply
1
$5
Reused from old project
Wires, Resistors, Female Connectors, Standoff, Breadboard, etc.
Misc.
-
-
Various Sources

Design & Implementation

Our project designs are composed of hardware and software, intercommunicating with one another to fulfill the overall process. The main component revolves around the sensor receiving and sending signals depending on the situation to a host server to transfer that signal into a message to the user. Each of these processes does so in a chain scenario where one depends on the other to function.

Hardware Design

Hardware components used in this project:

  • LPC1758 MicroController
  • Wifly Module
  • PIR Motion Sensor
  • Battery Pack

LPC1758 MicroController

Cmpe146 S13 T4 HWDesign0.png

Figure 6.1-1:LPC1758 MicroController

Hardware Interface

In this section, you can describe how your hardware communicates, such as which BUSes used. You can discuss your driver implementation here, such that the Software Design section is isolated to talk about high level workings rather than inner working of your project.

Software Design

Show your software design. For example, if you are designing an MP3 Player, show the tasks that you are using, and what they are doing at a high level. Do not show the details of the code. For example, do not show exact code, but you may show psuedocode and fragments of code. Keep in mind that you are showing DESIGN of your software, not the inner workings of it.

Implementation

This section includes implementation, but again, not the details, just the high level. For example, you can list the steps it takes to communicate over a sensor, or the steps needed to write a page of memory onto SPI Flash. You can include sub-sections for each of your component implementation.

Testing & Technical Challenges

Describe the challenges of your project. What advise would you give yourself or someone else if your project can be started from scratch again? Make a smooth transition to testing section and described what it took to test your project.

Include sub-sections that list out a problem and solution, such as:

Wifi Connection Issues

Many wifi connection issues were encountered. To solve this problem, a dedicated task was created to re-connect to wifi if the connection was ever lost.

Conclusion

Conclude your project here. You can recap your testing and problems. You should address the "so what" part here to indicate what you ultimately learnt from this project. How has this project increased your knowledge?

Project Video

Upload a video of your project and post the link here.

Project Source Code

Send me your zipped source code and I will upload this to SourceForge and link it for you.

References

Acknowledgement

Any acknowledgement that you may wish to provide can be included here.

References Used

Template:Reflist

Appendix

You can list the references you used.