F15: Electronic Piano

From Embedded Systems Learning Academy
Revision as of 20:21, 16 December 2015 by Proj user21 (talk | contribs) (Schedule)

Jump to: navigation, search

Grading Criteria

  • How well is Software & Hardware Design described?
  • How well can this report be used to reproduce this project?
  • Code Quality
  • Overall Report Quality:
    • Software Block Diagrams
    • Hardware Block Diagrams
      Schematic Quality
    • Quality of technical challenges and solutions adopted.

Project Title

Electronic Piano with Motion Controlled LED Keys

Abstract

The purpose of this project is to design a motion controlled electronic piano powered by an SJ-One Board. The piano will be able to play the notes of a piano using motion sensors as keys. At activation, LEDs will light up the key. The physical size of the piano will cover a single octave; however, the board will provide, the player, control to change the scope of the notes across other octaves.

Objectives & Introduction

Show list of your objectives. This section includes the high level details of your project. You can write about the various sensors or peripherals you used to get your project completed.

Team Members & Responsibilities

  • Jason Tran
    • Computer Engineering SJSU
  • Arthur Nguyen
    • Computer Engineering SJSU

Schedule

Show a simple table or figures that show your scheduled as planned before you started working on the project. Then in another table column, write down the actual schedule so that readers can see the planned vs. actual goals. The point of the schedule is for readers to assess how to pace themselves if they are doing a similar project.

Week# Date Task Actual
1 10/30 Project proposal Completed
2 11/6 Part testing and project outline Completed testing Sharp IR sensor and MIDI controller interface. Went over entire project in theory of both hardware and software design.
3 11/13 Order parts Completed order of essential parts.
4 11/20 Setup all keys with sound. Completed playing sounds with key activation.
5 11/27 Volume control and power circuit. Completed.
6 12/4 Combine circuits and start mounting system. Completed.
7 12/11 Build LED circuit. Combine circuits and mount to board. Completed.
8 12/17 Final changes and demo Completed? Problems Encountered?

Parts List & Cost

Give a simple list of the cost of your project broken down by components. Do not write long stories here.

Quanitity Price per part Part Detail Vendor
1 $40 SJ-One Board Microcontroller SJSU SCE
12 $13.95 GP2Y0A41SK0F Infrared Proximity Sensor Short Range-Sharp SparkFun
12 $1.50 3-pin JST Infrared Sensor Jumper Wire SparkFun
6 $2.30 MCP3002 Analog to Digital Converter SparkFun
12 $0.202 WP59EGW/CA Red/ Green Diffused Common Anode LED Mouser
1 $1.48 TLC6C5912QPWRQ1 12 Channel Shift Register LED Driver Mouser
1 $5.42 LCQT-TSSOP20 TSSOP to 20DIP Socket Adapter Mouser
0 $2.30 MCP3002 Analog to Digital Converter SparkFun
0 $2.30 MCP3002 Analog to Digital Converter SparkFun
0 $2.30 MCP3002 Analog to Digital Converter SparkFun

Design & Implementation

The design section can go over your hardware and software design. Organize this section using sub-sections that go over your design and implementation.

Hardware Design

Discuss your hardware design here. Show detailed schematics, and the interface here.

Hardware Interface

In this section, you can describe how your hardware communicates, such as which BUSes used. You can discuss your driver implementation here, such that the Software Design section is isolated to talk about high level workings rather than inner working of your project.

Software Design

Show your software design. For example, if you are designing an MP3 Player, show the tasks that you are using, and what they are doing at a high level. Do not show the details of the code. For example, do not show exact code, but you may show psuedocode and fragments of code. Keep in mind that you are showing DESIGN of your software, not the inner workings of it.

Implementation

This section includes implementation, but again, not the details, just the high level. For example, you can list the steps it takes to communicate over a sensor, or the steps needed to write a page of memory onto SPI Flash. You can include sub-sections for each of your component implementation.

Testing & Technical Challenges

Describe the challenges of your project. What advise would you give yourself or someone else if your project can be started from scratch again? Make a smooth transition to testing section and described what it took to test your project.

Include sub-sections that list out a problem and solution, such as:

My Issue #1

Discuss the issue and resolution.

Conclusion

Conclude your project here. You can recap your testing and problems. You should address the "so what" part here to indicate what you ultimately learnt from this project. How has this project increased your knowledge?

Project Video

https://youtu.be/DqBue8DKsk0

Project Source Code

References

Acknowledgement

Any acknowledgement that you may wish to provide can be included here.

References Used

Short IR data sheet Media: CMPE146_F15_ElectricPiano_shortIR.pdf

Analog to digital converter datasheet Media: CMPE146_F15_ElectricPiano_ADC.pdf

LED driver data sheet Media:CMPE146_F15_ElectricPiano_LEDdriver.pdf

Appendix

You can list the references you used.