S15: Wireless Power Transfer System
Contents
Grading Criteria
- How well is Software & Hardware Design described?
- How well can this report be used to reproduce this project?
- Code Quality
- Overall Report Quality:
- Software Block Diagrams
- Hardware Block Diagrams
- Schematic Quality
- Quality of technical challenges and solutions adopted.
Wireless Power Transfer System
Abstract
This section should be a couple lines to describe what your project does.
Objectives & Introduction
Show list of your objectives. This section includes the high level details of your project. You can write about the various sensors or peripherals you used to get your project completed.
Team Members & Responsibilities
- Team Member 1
- Haroldo Filho - Lead Software Engineer
- Team Member 2
- Hemant Raman - Lead Hardware Engineer
- Team Member 3
- Hassan Naveed - Software Implementation
- Team Member 4
- Guangyu Chen - Software Implementation
Schedule
Week# | Date | Task | Actual |
---|---|---|---|
1 | 4/14 |
-Light an LED wirelessly -Test ADC: read 0~3.3V range -Test Nordic wireless: send/receive ADC value |
Completed. |
2 | 4/21 |
-Find channel frequency: 7.7MHz -Define wireless package structure: status and commands -Spec/order motor |
Completed |
3 | 4/28 |
-Implement wireless communication -Define software architecture layers -Define error code and handler -Implement motor control |
Completed, See software design section below for details |
3 | 5/5 |
-Evaluate ADC reading dynamics and design LPF -Implement software architecture layers |
Completed? Problems Encountered? |
3 | 5/12 |
-SW/HW Integration and testing. |
Completed? Problems Encountered? |
Parts List & Cost
Item# | Qty | Reference | Part Name | Manufacturer | Description |
---|---|---|---|---|---|
1 | 4 | C1-4 | CAPMICA1,10pF | IPC SM-782 STD. | MICA TANTALUM CAPACITOR 5.69 X 10.9 MM |
2 | 2 | D2-3 | DIO-MLL41 | IPC SM-782 | SURFACE MOUNT DIODE, MELF |
3 | 1 | L3 | IND-MOLDED,849nH | Regular Copper Pipe 15 inches Dia Loop | MOLDED INDUCTOR, 0.5" PIN SPACING |
4 | 2 | L1-2 | IND-UPRIGHT,100uH | UPRIGHT INDUCTOR WITH CORE | |
5 | 1 | D1 | MLED76 | MOTOROLA | INFRARED LED |
6 | 1 | R6 | RES-1/4W,100 ohms | RES BODY:100 CENTERS:500 | |
7 | 1 | R7 | RES-1/4W,10K | RES BODY:100 CENTERS:500 | |
8 | 1 | R5 | RES-1/4W,4.7K | RES BODY:100 CENTERS:500 | |
9 | 1 | R1 | RES-1/4W,5.6K | RES BODY:100 CENTERS:500 | |
10 | 2 | R3-4 | RES-1/4W,68 ohms | RES BODY:100 CENTERS:500 | |
11 | 1 | R2 | RES-1/4W_SMALL,5.6K | RES BODY:100 CENTERS:500 | |
12 | 1 | S1 | SW-NKK-JF15 | NKK JF15SP3C | NKK SPST N/O MOMENTARY PUSHBUTTON SWITCH |
13 | 3 | U1-3 | TO220-4_MOSFET |
Design & Implementation
The design section can go over your hardware and software design. Organize this section using sub-sections that go over your design and implementation.
Hardware Design
Discuss your hardware design here. Show detailed schematics, and the interface here.
Hardware Interface
In this section, you can describe how your hardware communicates, such as which BUSes used. You can discuss your driver implementation here, such that the Software Design section is isolated to talk about high level workings rather than inner working of your project.
Software Design
For the software design, we define a layered architecture where each layer takes its services from the layer directly below it. The integrity of layered system was important as to ensure that no race conditions are generated where two tasks wait indefinitely for each other. The layers are:
1. WIFI 2. Communication 3. Motion Control
For the WIFI layer, we use the wireless API and define our own packet structure. A total of 32 bytes(24 data and 8 overhead bytes) can be sent using the wireless_send function. Using the 24 available byte space, we design the packet as follows: Byte 23-16 ----> Command (Move, getStatus, Stop) Byte 15-8 ----> Parameter 1 Byte 7-0 ----> Parameter 2
Implementation
This section includes implementation, but again, not the details, just the high level. For example, you can list the steps it takes to communicate over a sensor, or the steps needed to write a page of memory onto SPI Flash. You can include sub-sections for each of your component implementation.
Testing & Technical Challenges
Describe the challenges of your project. What advise would you give yourself or someone else if your project can be started from scratch again? Make a smooth transition to testing section and described what it took to test your project.
Include sub-sections that list out a problem and solution, such as:
My Issue #1
Discuss the issue and resolution.
Conclusion
Conclude your project here. You can recap your testing and problems. You should address the "so what" part here to indicate what you ultimately learnt from this project. How has this project increased your knowledge?
Project Video
Project Source Code
References
Acknowledgement
Any acknowledgement that you may wish to provide can be included here.
References Used
List any references used in project.
Appendix
You can list the references you used.