Project Title
Optimus - Self Navigating R/C Car powered by SJOne(LPC1758) micro controller
Abstract
This section should be a couple lines to describe what your project does.
Objectives & Introduction
Show list of your objectives. This section includes the high level details of your project. You can write about the various sensors or peripherals you used to get your project completed.
Team Members & Responsibilities
- Android App, Bluetooth/App Interface
Schedule
Legend:
Major Feature milestone , CAN Master Controller , Sensor & IO Controller , Android Controller, Motor Controller , Geo , Team Goal
Week#
|
Date
|
Planned Task
|
Actual
|
Status
|
1
|
9/23/2017
|
- Decide roles for each team member
- Read FY16 project reports and understand requirements
- Setup Gitlab project readme
- Ordered CAN Tranceivers and get R/C car
|
- Team roles are decided and module owners are assigned
- Gitlab project is set
- Ordered CAN tranceivers and got R/C Car
|
Complete.
|
2
|
9/30/2016
|
- Design software architecture for each module and design signal interfaces between modules
- Setup Wiki Project Report template
- Design Hardware layout of system components
- Create component checklist and order required components for individual modules.
- Setup Gitlab project code for each modules
|
- Overall project requirements are understood
- Wiki Project report setup is done
- Odered components for Geo controller module
- Initial commit of project base is done
|
Complete
|
3
|
10/14/2016
|
- Major Feature: Implement Free run mode
- Implement heartbeat messages and initial system bootup sync between modules
- Inerface the RPLidar to SJ board using UART communication
- Test LIDAR Interface on SJOne to receive data from sensor
- Study of Android Toolkit for Bluetooth Adapter connections and APIs
- Study of HC-05 Bluetooth Module
- Creating APIs for Start/ STOP button requests to write to output-Stream buffers
- Creating RFComm SPP Connection socket and the rest of UI for basic operation of Pairing, Connection
- Checking the AT Command sequence for Bluetooth Operation and Pairing
- Automating the AT Command sequence for Bluetooth HC-05 operation and Android App
- Run Motors via commands from SJOne Automatically
- Order the RPM sensor module for the Drive Controller
- Design and Order PCB
|
- Major Feature: Implemented Free run mode
- Added hearbeat messages from all controllers to master in can_db and implemented the handling functions in master controller
- Implemented speed steer command CAN msg transmission and handling in Master controller. Master-Drive integration phase-I
- Motor: ESC Traxxas XL-5 (Electronic Speed Control) interfaced to SJOne board
- Tested and identified duty cycles for different speeds required; Callibration and testing of ESC is over exteral switch at P0.1
- Ordered RPM sensor
|
Complete
|
4
|
10/21/2016
|
- Major Feature: Implement Basic Obstacle Avoidance in Free-run mode
- Add all modules CAN messages to DBC file
- Test steer and speed CAN commands between Master and Motor
- Implement Obstacle avoidance algorithm
- Unit Test the obstacle distance and angle obtained and Fine tune the algorithm for minimum error
- Test whether PWM signal is given to Motor control pin of Lidar before starting scan
- Configure the CAN communication of sensor readings to the master and other nodes
- Interface compass module to SJOne board and calibrate the errors
- find the heading and bearing angle based on mocked checkpoint
- Test and verify GPS module outdoor to receive valid data and check for errors
- Calibrate the GPS module error
- Design and implement the DRIVE_CONTROLLER STEER/SPEED interface with Master (TDD)
- Install the new RPM sensor module for the Drive Controller
- Operating motors based on the CAN messages from the Master
|
- Major Feature: Implemented Free-run mode w/o obstacle avoidance
- Added all modules basic CAN messages in can_db
- Implemented interface files in master controller to handle CAN messages from all nodes to master
- Implemented Master-Drive controller Integration
- Implemented Master-Bluetooth controller integration
- Added all modules basic CAN messages in can_db
- GPS integrated to SJONE board
- Added all modules basic CAN messages in can_db
- MASTER_SPEED_STEER_CMD was defined to use 8-bits for speed control (neutral, forward, and reverse); 9-bits for steer control (straight, left, and right)
- Designed glue code: DriveManager and hardware interface code: DriveController using TDD (test code in _MOTOR/_cgreen_test/)
- Got the Traxxas #6520 RPM sensor; installed the same with the slipper clutch; Observed the RPM sensor trigger over an oscilloscope and found the minimum distance of magnet to RPM sensor is not achievable with the stock slipper clutch. Ordered Traxxas #6878 new slipper clutch and ball-bearings
- Master - Drive Controller Interface implemented and tested over CAN; Check "drive" terminal command on Master controller
|
complete
|
5
|
10/28/2016
|
- Major Feature: Implement maneuvering in Master controller
- Implement maneuvering algorithm to drive steering angle of the servo
- Implement maneuvering algorithm to control ESC speed
- Identify the basic speed(s) at which the car shall move; the min, max and normal forward speeds, and the min and normal reverse speeds
- Interface the RPM sensor over ADC and validate the readings
- Writing PID Algorithm for Motor Control
- Calibrating PID constants according to the Motors
- Testing the Bluetooth Range and multiple pairing option to establish security of the Master device
- Test the logic of heading and bearing angle
- Testing the accuracy of GPS while moving
- Finish PCB design and place order
|
- Major Feature: Implemented maneuvering in Master-Geo controller
- Major Feature: Implemented Basic Obstacle Avoidance in Free-run mode
- Implement maneuvering algorithm in android app is moved to next week schedule
- Implemented maneuvering algorithm in Master to drive steering angle of the servo
- Implement maneuvering algorithm in MAster to control ESC speed
- Completed PCB Design
|
Complete
|
6
|
11/04/2016
|
- Major Feature: Implement maneuvering with Android app data
- Implement maneuvering algorithm to recieve checkpoints from android app
- Design the I/O and disgnostic data display indicators
|
|
Ontrack
|
7
|
11/11/2016
|
- Major Feature: Implement I/O controls and disgnostics indicators
- Create 2 CAN messages for Disgnostic and I/O data to transmit it to BLE module
- Receive the diagnostic CAN message and decode to transmit it to Android App
- Design Android app views for visualizing Diagnostic and I/O data
- Test when Sensor module is corrupting the CAN bus communication
|
|
Planned.
|
8
|
11/18/2016
|
- Major Feature: Full feature integration test
|
|
Planned.
|
9
|
11/25/2016
|
- Major Feature: Full feature integration test
|
|
Planned.
|
10
|
12/1/2016
|
- Major Feature: Full feature integration test
|
|
Planned
|
11
|
12/8/2016
|
- Major Feature: Full feature integration test
|
|
Planned
|
12
|
12/15/2016
|
- Update Wiki Complete Report
|
|
Planned
|
Parts List & Cost
Give a simple list of the cost of your project broken down by components. Do not write long stories here.
CAN Communication
DBC File
https://gitlab.com/optimus_prime/optimus/blob/master/_can_dbc/243.dbc
Design & Implementation
The design section can go over your hardware and software design. Organize this section using sub-sections that go over your design and implementation.
Hardware Design
Discuss your hardware design here. Show detailed schematics, and the interface here.
Hardware Interface
In this section, you can describe how your hardware communicates, such as which BUSes used. You can discuss your driver implementation here, such that the Software Design section is isolated to talk about high level workings rather than inner working of your project.
Software Design
Show your software design. For example, if you are designing an MP3 Player, show the tasks that you are using, and what they are doing at a high level. Do not show the details of the code. For example, do not show exact code, but you may show psuedocode and fragments of code. Keep in mind that you are showing DESIGN of your software, not the inner workings of it.
Implementation
This section includes implementation, but again, not the details, just the high level. For example, you can list the steps it takes to communicate over a sensor, or the steps needed to write a page of memory onto SPI Flash. You can include sub-sections for each of your component implementation.
Testing & Technical Challenges
Describe the challenges of your project. What advise would you give yourself or someone else if your project can be started from scratch again?
Make a smooth transition to testing section and described what it took to test your project.
Include sub-sections that list out a problem and solution, such as:
<Bug/issue name>
Discuss the issue and resolution.
Conclusion
Conclude your project here. You can recap your testing and problems. You should address the "so what" part here to indicate what you ultimately learnt from this project. How has this project increased your knowledge?
Project Video
Upload a video of your project and post the link here.
Project Source Code
References
Acknowledgement
Any acknowledgement that you may wish to provide can be included here.
References Used
List any references used in project.
Appendix
You can list the references you used.