F15: Plant Control

From Embedded Systems Learning Academy
Revision as of 22:45, 16 December 2015 by Proj 146u1 (talk | contribs) (Objectives & Introduction)

Jump to: navigation, search

Grading Criteria

  • How well is Software & Hardware Design described?
  • How well can this report be used to reproduce this project?
  • Code Quality
  • Overall Report Quality:
    • Software Block Diagrams
    • Hardware Block Diagrams
      Schematic Quality
    • Quality of technical challenges and solutions adopted.

Automated Plant Control System

Abstract

The Plant Control project introduces a plant incubator which allows for resource and energy efficiency while producing healthy flowering and vegetation. The incubator will utilize an SJOne development board, its on-board sensors (light/temperature), a moisture sensor, and LEDs in order to autonomously provide the optimal moisture level for growth in any lighting. The owner of the plant control system can be confident that his or her plant is growing in perfect conditions and will be notified otherwise via an LCD screen.

Objectives & Introduction

This project is a self watering, self lighting, and temperature alerting plant grower.
The entire system is controlled via an SJOne Board which utilizes an LPC1758 Microprocessor.

In addition to the onboard sensors, the project will require interfacing to:

  • RGB LCD Screen
  • Moisture Sensor
  • Water Pump
  • PWM controlled LED

Team Members & Responsibilities

  • Moises Negrete
    • LED and Water Pump Driver Circuit Design
    • Temperature, Light Sensor, PWM software
    • Design and Build Planter
  • Eduardo Lemus
    • LCD Interface
    • Source Code Task and Timing Cleanup
  • David Chiu
    • Moisture Sensor Interface
    • Power Regulator Circuit
    • Design and Build Planter

Schedule

Show a simple table or figures that show your scheduled as planned before you started working on the project. Then in another table column, write down the actual schedule so that readers can see the planned vs. actual goals. The point of the schedule is for readers to assess how to pace themselves if they are doing a similar project.

Week# Date Task Actual
1 10/24 Research best lighting, temperature, moisture conditions Completed
2 10/30 Purchase necessary equipment, and begin testing equipment (sensors) Completed
3 11/06 Interface Sensors Completed
4 11/13 Interface LEDs and Water Pump Completed
5 11/20 Begin Building Planter Completed
6 11/27 Finish Building Planter & Begin RT Code Completed

Parts List & Cost

Part Name cost
Water Pump 5$
Purchase necessary equipment, and begin testing equipment (sensors) Completed
Interface Sensors Completed
Interface LEDs and Water Pump Completed
Begin Building Planter Completed
Finish Building Planter & Begin RT Code Completed

Design & Implementation

The design section can go over your hardware and software design. Organize this section using sub-sections that go over your design and implementation.

Hardware Design

Discuss your hardware design here. Show detailed schematics, and the interface here.

Hardware Interface

In this section, you can describe how your hardware communicates, such as which BUSes used. You can discuss your driver implementation here, such that the Software Design section is isolated to talk about high level workings rather than inner working of your project.

Software Design

Show your software design. For example, if you are designing an MP3 Player, show the tasks that you are using, and what they are doing at a high level. Do not show the details of the code. For example, do not show exact code, but you may show psuedocode and fragments of code. Keep in mind that you are showing DESIGN of your software, not the inner workings of it.

Implementation

This section includes implementation, but again, not the details, just the high level. For example, you can list the steps it takes to communicate over a sensor, or the steps needed to write a page of memory onto SPI Flash. You can include sub-sections for each of your component implementation.

Testing & Technical Challenges

Describe the challenges of your project. What advise would you give yourself or someone else if your project can be started from scratch again? Make a smooth transition to testing section and described what it took to test your project.

Include sub-sections that list out a problem and solution, such as:

My Issue #1

Discuss the issue and resolution.

Conclusion

Conclude your project here. You can recap your testing and problems. You should address the "so what" part here to indicate what you ultimately learnt from this project. How has this project increased your knowledge?

Project Video

Upload a video of your project and post the link here.

Project Source Code

References

Acknowledgement

We would like to thank both Preetpal Kang and Dr. Haluk Ozemek, for their limitless support and encouragement throughout the semester.
The knowledge and skills gained in CMPE146 were paramount to the completion of this project.

References Used

http://www.seeedstudio.com/wiki/Grove_-_LCD_RGB_Backlight
https://www.fairchildsemi.com/datasheets/2N/2N7000.pdf

Appendix

You can list the references you used.