Difference between revisions of "S17: Sphero Droid"

From Embedded Systems Learning Academy
Jump to: navigation, search
(Hardware Interface)
(GPS and Temperature Sensor)
Line 250: Line 250:
 
=== Implementation ===
 
=== Implementation ===
  
== GPS and Temperature Sensor ==
+
== GPS Module ==
 
=== Hardware Design ===
 
=== Hardware Design ===
 
The GPS module used in our project is Venus GPS logger (Venus638FLPx) by Spark fun Electronics. This module is the successor of  Venus634LPx and it has a higher update rate and can be configured to operate at an update rate of 20Hz.It can be connected to the PC using a serial to USB converter and configured with the help of a GPS viewer software by SkyTraq which has a GUI and is easy to use.This is handled by the software by sending appropriate commands to the GPS logger when an option is selected by the user.
 
The GPS module used in our project is Venus GPS logger (Venus638FLPx) by Spark fun Electronics. This module is the successor of  Venus634LPx and it has a higher update rate and can be configured to operate at an update rate of 20Hz.It can be connected to the PC using a serial to USB converter and configured with the help of a GPS viewer software by SkyTraq which has a GUI and is easy to use.This is handled by the software by sending appropriate commands to the GPS logger when an option is selected by the user.

Revision as of 08:41, 19 May 2017

Grading Criteria

  • How well is Software & Hardware Design described?
  • How well can this report be used to reproduce this project?
  • Code Quality
  • Overall Report Quality:
    • Software Block Diagrams
    • Hardware Block Diagrams
      Schematic Quality
    • Quality of technical challenges and solutions adopted.

Project Title

Sphero Droid

Sphero Droid

Abstract

Robots are revolutionizing almost every industry, primarily in the sectors where human safety is at risk. In hazardous working conditions such as in the mining industry, the lack of knowledge about the geographic nature and the environmental conditions of the mine hinder the rescue operations. Autonomous robots are being employed to improve the plight of mine workers and rescue operators. The robotic vehicle can explore the inaccessible and unworkable mines and disaster-affected areas and send valuable information to the teams to assist in search and rescue operations. But traditional robots could be rendered useless if they are overturned or in terrains having staircases and ledges. Also, there is a possibility of failure of the electrical and mechanical components exposed to the harsh environmental conditions. An autonomous spherical robot is a better option since its shape offers better robustness and rigidity. The spherical robot will enclose all the components within it and will not have any wheels or legs on its exterior. This feature enables it to operate in any hazardous conditions since there will be very less chance for the components to get damaged by the surrounding environment. The spherical design allows it to easily maneuver in different types of terrain, be it stairs or corners, and have no risk of being overturned. These advantages enable the robot for many applications such as exploration and mapping of access routes, surveillance and rescue operations in uncomfortable working conditions.

Objectives & Introduction

The objective of this project is to design an autonomous spherical robot with sensors, Global Positioning System (GPS) module, Bluetooth module and other control units interfaced to the microcontroller, which navigates its way to the destination avoiding obstacles. The temperature and the route followed by the robot can be logged on the SD card. These features enable the robot for many applications such as exploration and mapping of access routes, surveillance, and rescue operations in uncomfortable working conditions.

Team Members & Responsibilities

Schedule

Week# Start Date End Date Task Status Actual Completion Date
1 3/21 3/27
  • Requirement analysis and team discussion to order parts.
  • Determine individual tasks and assigning work based on different modules in project
Done 3/29
2 3/28 4/3
  • Configure and interface the GPS module with the SJOne board
  • Configure and interface individual sensor with SJOne board
  • Interface motors with the SJOne board
  • Upload code on GitLab
Done 4/9
3 4/9 4/18
  • Designing PCB
  • Team discussions to integrate the design and work on the algorithm
  • Continue work on individual module (Sensors, motors, GPS) working with SJOne board
Done 4/21
4 4/18 4/25
  • Integrate the different modules
  • Build the sphere with bearings and enclose the components within it
Done 4/28
5 4/25 5/2
  • Test in different environments and fix bugs based on different issues
  • Team discussion on extra features that can be implemented
Done 5/7
6 5/2 5/9
  • Testing and Debugging
  • Work on extra features (if any)
  • Work on Project Report on Wiki
In Progress
7 5/9 5/20
  • Testing and Debugging
  • Project Presentation and update Wiki
Plan
8 5/16 5/23
  • Complete Wiki Report and Final Demo
Plan

Parts List & Cost

Qty Description Manufacturer Part Number Cost Links
1 SJ One Board [1] Preet SJ-one $80 http://www.socialledge.com/sjsu/index.php?title=SJ_One_Board
2 DC Motor RobotShop Pololu 4.5V, 80rpm Right Angle Plastic Gear Motor $4.95 http://www.robotshop.com/en/pololu-80rpm-right-angle-plastic-gear-motor.html
1 Servo Motor Fry's electronics Metal Gear Digital Servo Part No. LS-0009AF $19.99 http://www.frys.com/product/7027281
1 Motor Driver Fry's electronics Motor Driver $9.99 http://www.frys.com/product/8353697
1 GPS Logger Spark fun Electronics Venus638FLPx $59.95 https://www.sparkfun.com/products/10920
1 Bluetooth Module Amazon.com HC-05 Bluetooth $8.49 https://www.amazon.com/dp/B01G9KSAF6?psc=1
3 Ultrasonic sensor Amazon.com LV Maxsonar -EZ MB1010 $74.85 https://www.amazon.com/Maxbotix-MB1010-LV-MaxSonar-EZ1-Range-Finder/dp/B00A7YGVJI
1 Antenna GPS Embedded SMA Spark fun Electronics VTorch Datasheet $11.95 https://www.sparkfun.com/products/177
1 PCB components Amazon.com (7805, 2 pin SPDT switch, 4004 diode, LD1117, Female pin header, male pin header, USB type B female jack, DC power jack, power supply module) $72.00 https://www.amazon.com/gp/product/B01LRXIJRY/ref=oh_aui_detailpage_o03_s02?ie=UTF8&psc=1
2 Wheels Amazon.com 70 x 8mm Black Robot Wheels $12.00 https://www.amazon.com/gp/product/B00T3MQDHU/ref=oh_aui_detailpage_o08_s00?ie=UTF8&psc=1
2 Bearing Amazon.com 2 Pcs 22mm Outside Dia Plastic Coated Ball  $7.93 https://www.amazon.com/gp/product/B00HR5SJKE/ref=oh_aui_detailpage_o08_s01?ie=UTF8&psc=1
1 Hollow spherical ball Amazon.com Giant Chinchilla Run-About 11-1/2-Inch Exercise Ball $15.76 https://www.amazon.com/gp/product/B0006IK0LA/ref=oh_aui_detailpage_o00_s00?ie=UTF8&psc=1

Ultrasonic Range Finders

Hardware Design

Hardware Interface

Sensor Interfacing with SJOne board

Software Design

Implementation

Motors

Hardware Design

Hardware Interface

  • DC Motors
DC Motor Interface with SJOne board
  • Servo Motor


Software Design

Implementation

GPS Module

Hardware Design

The GPS module used in our project is Venus GPS logger (Venus638FLPx) by Spark fun Electronics. This module is the successor of Venus634LPx and it has a higher update rate and can be configured to operate at an update rate of 20Hz.It can be connected to the PC using a serial to USB converter and configured with the help of a GPS viewer software by SkyTraq which has a GUI and is easy to use.This is handled by the software by sending appropriate commands to the GPS logger when an option is selected by the user.

Hardware Interface

GPS Interfacing with SJOne board

Software Design

Implementation

SDCard

Hardware Design

Hardware Interface

Software Design

Implementation

Bluetooth module and Android Application

Hardware Design

Hardware Interface

Software Design

Implementation

PCB Designing

Hardware Design

Hardware Interface

Software Design

Implementation







<b












Testing & Technical Challenges

Describe the challenges of your project. What advise would you give yourself or someone else if your project can be started from scratch again? Make a smooth transition to testing section and described what it took to test your project.

Include sub-sections that list out a problem and solution, such as:

My Issue #1

Discuss the issue and resolution.

Conclusion

Conclude your project here. You can recap your testing and problems. You should address the "so what" part here to indicate what you ultimately learnt from this project. How has this project increased your knowledge?

Project Video

Upload a video of your project and post the link here.

Project Source Code

References

Acknowledgement

Any acknowledgement that you may wish to provide can be included here.

References Used

List any references used in project.

Appendix

You can list the references you used.