Difference between revisions of "S15: Tilt Motion Controlled LED Alarm Clock"
(→Objectives & Introduction) |
(→Team Members & Responsibilities) |
||
Line 28: | Line 28: | ||
=== Team Members & Responsibilities === | === Team Members & Responsibilities === | ||
* David Whiting | * David Whiting | ||
− | |||
* Ann Varakukala | * Ann Varakukala | ||
+ | * Navleen Johal | ||
== Schedule == | == Schedule == |
Revision as of 21:29, 30 April 2015
Contents
Grading Criteria
- How well is Software & Hardware Design described?
- How well can this report be used to reproduce this project?
- Code Quality
- Overall Report Quality:
- Software Block Diagrams
- Hardware Block Diagrams
- Schematic Quality
- Quality of technical challenges and solutions adopted.
Project Title
Abstract
The Tilt Motion Controlled LED Alarm Clock is system that will allow the user to set an alarm using the SJSUOne Board. Users can view the time on an 8X8 RBG LED Board, and can manipulate the hours and minutes by tilting the board left and right respectively. A buzzer will be used as alarm tone, when the alarm goes off.
Objectives & Introduction
The Objectives of this project:
- Research and design the schematics to connect and power the 8X8 LED Board to the SJSUOne Board
- Complete the hardware according to schematics
- Test LED Board and light up individual LEDs and use shift register to shift LEDs across the screen
- Display time on the board
- Program to manipulate alarm time using on-board accelerometer.
- Program buzzer to go off when alarm time has reached
- Add additional sensors or have music playing from SD card if time permits
Team Members & Responsibilities
- David Whiting
- Ann Varakukala
- Navleen Johal
Schedule
Week# | Start Date | End Date | Task | Actual |
---|---|---|---|---|
1 | 4/6 | 4/12 | Continue to conduct research necessary for the project.
Understand the schematics of each part. Design the schematics for project. |
Parts were received and team members looked over the schematics of the necessary parts and designed the schematics for the project. |
2 | 4/13 | 4/19 | Build the schematics and check if the leds on the board light up.
Test to see if individual bits light up. Understand how to control the red, green, and blue leds on the board. |
|
3 | 4/20 | 4/26 | Continue to work on building the project by connecting to SJ One Board.
Program GPIO pins to control the rows on the 8X8 Led Board |
|
4 | 4/27 | 5/3 | Program to display time on board.
Program push buttons for setting hours and minutes, AM and PM |
|
5 | 5/4 | 5/10 | Continue to program to display time.
Tilt SJ One Board to change hours and minutes for setting the alarm. Program the buzzer to turn on when alarm time is reached |
|
6 | 5/11 | 5/17 | Add and program additional sensors. Begin testing. | |
7 | 5/18 | 5/24 | Final Testing and Debugging | |
8 | 5/25 | 5/25 | Demo Day |
Parts List & Cost
Quantity | Item | Cost |
---|---|---|
1 | SJ One Board | $80.00 |
1 | 8X8 RGB LED Board | $7.50 |
3 | SN74HC595: Shift Register | $1.05 |
24 | 220 Ohm Resistors | $0.20 |
1 | Female to Female Jumper Wires | $6.00 |
1 | Buzzer | $0.50 |
Design & Implementation
The design section can go over your hardware and software design. Organize this section using sub-sections that go over your design and implementation.
Hardware Design
Discuss your hardware design here. Show detailed schematics, and the interface here.
Hardware Interface
In this section, you can describe how your hardware communicates, such as which BUSes used. You can discuss your driver implementation here, such that the Software Design section is isolated to talk about high level workings rather than inner working of your project.
Software Design
Show your software design. For example, if you are designing an MP3 Player, show the tasks that you are using, and what they are doing at a high level. Do not show the details of the code. For example, do not show exact code, but you may show psuedocode and fragments of code. Keep in mind that you are showing DESIGN of your software, not the inner workings of it.
Implementation
This section includes implementation, but again, not the details, just the high level. For example, you can list the steps it takes to communicate over a sensor, or the steps needed to write a page of memory onto SPI Flash. You can include sub-sections for each of your component implementation.
Testing & Technical Challenges
Describe the challenges of your project. What advise would you give yourself or someone else if your project can be started from scratch again? Make a smooth transition to testing section and described what it took to test your project.
Include sub-sections that list out a problem and solution, such as:
My Issue #1
Discuss the issue and resolution.
Conclusion
Conclude your project here. You can recap your testing and problems. You should address the "so what" part here to indicate what you ultimately learnt from this project. How has this project increased your knowledge?
Project Video
Upload a video of your project and post the link here.
Project Source Code
References
Acknowledgement
Any acknowledgement that you may wish to provide can be included here.
References Used
List any references used in project.
Appendix
You can list the references you used.