Difference between revisions of "F22: Thunder Flash"
(→Testing & Technical Challenges) |
(→Conclusion) |
||
Line 353: | Line 353: | ||
Discuss the issue and resolution. | Discuss the issue and resolution. | ||
− | == Conclusion == | + | == '''Conclusion''' == |
Conclude your project here. You can recap your testing and problems. You should address the "so what" part here to indicate what you ultimately learnt from this project. How has this project increased your knowledge? | Conclude your project here. You can recap your testing and problems. You should address the "so what" part here to indicate what you ultimately learnt from this project. How has this project increased your knowledge? | ||
Revision as of 04:58, 15 November 2022
Contents
Grading Criteria
- How well is Software & Hardware Design described?
- How well can this report be used to reproduce this project?
- Code Quality
- Overall Report Quality:
- Software Block Diagrams
- Hardware Block Diagrams
- Schematic Quality
- Quality of technical challenges and solutions adopted.
Bow and Arrow
Abstract
Bow and arrow is a fun, aiming archery game. Our goal is to produce a similar version of ‘Bow and Arrow’ where the archer aims the arrow at the targets (balloons) using the bow. The game would have different levels and the archer would get 3 lives to score maximum points. As the level increases the challenges and speed of the game increase. In the later levels, there would be monsters coming onto the archer. In the later levels, there would be monsters coming onto the archer, and the archer should make sure he dodges those obstacles to save his life and hit the balloons to earn points. This is all displayed on the LED matrix acting as the screen.
Objectives & Introduction
The main objective of this project was to create the “Bow and Arrow” video game displayed on a 64X64 RGB LED matrix, with one SJ2 board as a graphics processor/matrix controller, and another SJ2 board as a controller. Other objectives are the following:
- Design custom PCBs for both the gamepad and matrix controller SJ2 boards.
- Use the FreeRTOS Real-Time Operating System on both SJ2 boards.
- Establish UART communications through Xbee between the two SJ-Two Microcontrollers.
- Create simple coding logic for displaying required characters and game objects.
- Add background music to the game to enhance the gameplay experience.
Team Members & Technical Responsibilities
- Shreya Kulkarni
- Integrating of Graphics Driver
- Game logic design
- Joystick and button Implementation
- Pinky Mathew
- Interfacing of LED Matrix and driver design
- Game logic design
- Joystick and button Implementation
- Pushkar Deodhar
- Zigbee module
- Integrating MP3 module with the Game
- Hardware Designing & PCB Integration
- Noel Smith
- MP3 Audio Encoder/Decoder
- Integrating MP3 player with the Game
- Hardware Designing & PCB Integration
Administrative Responsibilities
Administrative Roles | ||||
---|---|---|---|---|
|
Noel Smith | |||
|
Pinky Mathew | |||
|
Shreya Kulkarni | |||
|
Pushkar Deodhar |
Schedule
Week# | Start Date | End Date | Task | Status |
---|---|---|---|---|
1 |
|
|
|
|
2 |
|
|
|
|
3 |
|
|
|
|
4 |
|
|
|
|
5 |
|
|
|
|
6 |
|
|
|
|
7 |
|
|
|
|
8 |
|
|
|
|
9 |
|
|
|
|
10 |
|
|
|
|
Bill Of Materials
Item# | Part Description | Part Model & Vendor | Quantity | Cost |
---|---|---|---|---|
1 | Microcontroller Boards | SJ2 Boards (Purchased from Preet Kang) | 2 | $100.00 |
2 | LED Matrix Display | Adafruit RGB LED Matrix Panel - 64x64 | 1 | $87.95 |
3 | PCB | JLC PCB | 5 | $18.00 |
4 | Electronics Fun Kit & Power Supply Module | ELEGOO Upgraded Electronics Fun Kit | 2 | $7.56 |
5 | MP3 Decoder | HiLetgo YX5300 UART Control Serial MP3 Music Player Module | 1 | $6.99 |
6 | Power Adapter for LED Matrix | Belker 36W Adapter | 1 | $15.00 |
7 | XBee Module | XBee 2mW Wire Antenna - Series 2C (ZigBee Mesh) | 2 | $62.00 |
8 | Joystick | HiLetgo Game Joystick Sensor Game Controller | 1 | $4.89 |
9 | Push Button Switch | Anchor Electronics | 1 | $1.00 |
10 | Jumper Cables | Anchor Electronics | 1 | $7.00 |
11 | Female headers for SJ2-PCB Connection | Anchor Electronics | 1 | $2.50 |
12 | Ribbon Cable Connector for LED Matrix-PCB Connection | Anchor Electronics | 1 | $1.00 |
13 | Soldering Wire & 18 Gauge Wire | Anchor Electronics | 1 | $3.00 |
14 | Copper Board for Game Controller Connections | Anchor Electronics | 1 | $4.00 |
Total Cost | 22 | $317.89 |
Design & Implementation
The design section can go over your hardware and software design. Organize this section using sub-sections that go over your design and implementation.
Hardware Design
Discuss your hardware design here. Show detailed schematics, and the interface here.
Hardware Interface
In this section, you can describe how your hardware communicates, such as which BUSes used. You can discuss your driver implementation here, such that the Software Design section is isolated to talk about high level workings rather than inner working of your project.
Software Design
Show your software design. For example, if you are designing an MP3 Player, show the tasks that you are using, and what they are doing at a high level. Do not show the details of the code. For example, do not show exact code, but you may show psuedocode and fragments of code. Keep in mind that you are showing DESIGN of your software, not the inner workings of it.
Implementation
This section includes implementation, but again, not the details, just the high level. For example, you can list the steps it takes to communicate over a sensor, or the steps needed to write a page of memory onto SPI Flash. You can include sub-sections for each of your component implementation.
Testing & Technical Challenges
Describe the challenges of your project. What advise would you give yourself or someone else if your project can be started from scratch again? Make a smooth transition to testing section and described what it took to test your project.
Include sub-sections that list out a problem and solution, such as:
<Bug/issue name>
Discuss the issue and resolution.
Conclusion
Conclude your project here. You can recap your testing and problems. You should address the "so what" part here to indicate what you ultimately learnt from this project. How has this project increased your knowledge?
Project Video
Upload a video of your project and post the link here.
Project Source Code
- github repository link[1]
References
Acknowledgement
Any acknowledgement that you may wish to provide can be included here.
References Used
- Serial MP3 Player Datasheet
- Binary code pattern generator for LED Matrix
- Everything You Didn't Want to Know About RGB Matrix Panels
- Parabolic Curve Generator for Ball Logic
- Bubble Trouble Miniclip Game
Appendix
You can list the references you used.