Difference between revisions of "F19: Tower Defense in Space"
Proj user10 (talk | contribs) m (→BILL OF MATERIALS) |
Proj user10 (talk | contribs) m (→INTRODUCTION AND OBJECTIVES) |
||
Line 46: | Line 46: | ||
|- style="vertical-align: top;" | |- style="vertical-align: top;" | ||
! scope="row" style="text-align: left;" | | ! scope="row" style="text-align: left;" | | ||
− | * [Zach Smith] | + | * [https://www.linkedin.com/feed/ Zach Smith] |
| style="text-align: left;" | | | style="text-align: left;" | | ||
Git Repo Manager<br /> | Git Repo Manager<br /> |
Revision as of 02:19, 15 December 2019
Contents
Grading Criteria
- How well is Software & Hardware Design described?
- How well can this report be used to reproduce this project?
- Code Quality
- Overall Report Quality:
- Software Block Diagrams
- Hardware Block Diagrams
- Schematic Quality
- Quality of technical challenges and solutions adopted.
Project Title
Tower Defense ... In Space
ABSTRACT
My abstract goes here.
INTRODUCTION AND OBJECTIVES
TEAM MEMBERS & RESPONSIBILITIES | ||||
---|---|---|---|---|
Team Members |
Administrative Roles |
Technical Roles | ||
|
Team Lead |
| ||
Git Repo Manager |
| |||
|
Wiki Report Manager |
| ||
|
Bill of Materials Manager |
|
SCHEDULE
TEAM MEETING DATES & DELIVERABLES | ||||
---|---|---|---|---|
Week# |
Date Assigned |
Deliverables |
Status | |
1 | 10/15/19 |
|
| |
2 | 10/22/19 |
|
| |
3 | 10/29/19 |
|
| |
4 | 11/5/19 |
Kelvin
|
| |
5 | 11/12/19 |
Kelvin
Polin
Ryan
Zach
|
| |
6 | 11/19/19 |
Kelvin
Polin
Ryan
Zach
|
| |
7 | 11/26/19 |
Kelvin
Polin
Ryan
Zach
|
| |
8 | 12/3/19 |
|
| |
9 | 12/10/19 |
|
|
BILL OF MATERIALS
Top Level | ||||
---|---|---|---|---|
PART NAME |
PART MODEL & SOURCE |
QUANTITY |
COST PER UNIT (USD) | |
|
|
|
| |
|
|
|
| |
|
|
|
| |
64x64 RGB LED Matrix* | Adafruit | 1 | $104.07 | |
5V 4A PSU | - | 1 | FREE |
Breakout Board PCB** | ||||
---|---|---|---|---|
Item # |
PART NAME |
PART SOURCE |
QUANTITY |
COST PER UNIT (USD) |
1 | IC REG LINEAR LD1117S33CTR | DIGIKEY | 5 | $0.351 |
2 | MHS16N-ND 16POS CONN 2.54MM | DIGIKEY | 2 | $2.60 |
3 | CAP CER 0.1UF 25V X7R 1206 | DIGIKEY | 5 | $0.221 |
4 | CAP CER 10UF 16V X5R 1206 | DIGIKEY | 5 | $0.202 |
5 | RES SMD 470 OHM 1% 1/4W 1206 | DIGIKEY | 10 | $0.0267 |
6 | PTC RESET FUSE 24V 500MA 1206 | DIGIKEY | 10 | $0.1588 |
7 | CONN SOCKET 40POS 0.1 TIN PCB | DIGIKEY | 2 | $5.03 |
8 | Manufacturing x 5 boards * | JLCPCB | 1 | $29.81 |
Gamepad PCB** | ||||
---|---|---|---|---|
Item # |
PART NAME |
PART SOURCE |
QUANTITY |
COST PER UNIT (USD) |
1 | Analog 2-axis Thumb Joystick w/ select button | Amazon | 1 | $7.67 |
2 | SAM8205-ND 10POS 1.27MM | DIGIKEY | 5 | $3.38 |
3 | LED GREEN 1206 SMD | DIGIKEY | 5 | $0.24 |
4 | LED RED 1206 SMD | DIGIKEY | 5 | $0.257 |
5 | RES 1K OHM 1% 1/2W 1206 SMD | DIGIKEY | 5 | 0.0358 |
6 | CAP CER 0.1UF 50V X7R 1206 | DIGIKEY | 5 | $0.088 |
7 | 12x12x7.3mm Tactile Push Button w/ cap (pack of 25) | Amazon | 1 | $7.89 |
8 | Manufacturing x 5 boards * | JLCPCB | 1 | $14.21 |
* Shipping and tax included in value shown in the cost per unit column
** Only parts that were purchased are displayed.
HARDWARE INTEGRATION
Hardware Design Overview
At a high level hardware integration requirements fell into two categories:
1. Reduce risk of unreliable cable connections and eliminate possibility of damage to components through unexpected disconnections, power surges, etc.
2. Provide a more fluid physical interface for the user to interact with the game via hardware
To accomplish these goals, two boards were designed: a breakout board and a gamepad controller. The breakout board serves as a connection hub between all system hardware components; power, the RGB matrix, the SJTWO board, etc. while the joystick provides a cleaner package to present the user with the games inputs. The diagram below shows the relationship between the main subsystems:
All board designs were done using EAGLE and manufactured by JLCPCB. Both boards were only two layers and used passive components for the most part.
Breakout Board Design
The breakout board design requirement was to interface all external hardware components with the embedded system (SJTWO). The hardware connections are:
1. The 64x64 RGB Matrix
2. Output power to the RGB Matrix
3. User game controller (see next section)
4. Input power supply (5V)
5. The SJTWO embedded system
Gamepad Hardware Design
The gamepad board design requirement was to provide a more packaged interface for the user to interact with the game.
Design
- Balancing priorities between HW design and getting a working prototype
Assembly
- Wireless antenna connector on master board not accounted for in footprint, it may have to be removed to avoid interference with one connector.
Bill Of Materials
HARDWARE INTEGRATION PCB | ||||
---|---|---|---|---|
PART NAME |
PART MODEL |
QUANTITY |
COST PER UNIT (USD) | |
TEST
In order
Hardware Design
During
We used
CONCLUSION
This pr