Difference between revisions of "S19: Lightfury"

From Embedded Systems Learning Academy
Jump to: navigation, search
(Schedule)
(DBC File)
Line 310: Line 310:
  
 
=== DBC File ===
 
=== DBC File ===
<Gitlab link to your DBC file>
+
[https://gitlab.com/BPradnya/light-fury/blob/master/243.dbc Git Link to DBC file]
<You can optionally use an inline image>
 
  
  

Revision as of 17:37, 16 April 2019

Project Title

LightFury

Abstract

LightFury is an autonomous electric car project that aims to bring different embedded system paradigms together and consolidate them with industry level sophistication and robustness. This project will feature an RC car which will employ different sensors and motors to navigate the track. Every sensor/motor combined with a dedicated functionality is managed by a controller. Such different controllers will communicate with the master node using the CAN protocol.

Introduction

The project was divided into 7 modules:

  • Master Controller
  • Motor Controller
  • Sensor Controller
  • GPS Controller
  • Android application and Bluetooth Connectivity
  • Hardware (PCB designing)
  • Testing

Team Members & Responsibilities

<Team Picture>

Project Link: Gitlab Link


Schedule

Week# Start Date Task Status Completion Date
1 02/12/2019
  • Form Teams and decide group name. Also look up past projects and learn about the autonomous car design.
Completed 02/12/2019
2 02/19/2019
  • Setup Gitlab
  • Order CAN Transceivers. Study CAN communication.
  • Commit and raise merge request by each member to get hold over Gitlab basics
Completed 02/19/2019
3 02/26/2019
  • Setup Gitlab master branch for Project Light Fury. Create and merge branches for development tracking.
Completed 02/26/2019
4 03/05/2019
  • Read previous projects, gather information and discuss among the group members.
  • Distribute modules to each team member.
  • Divide the applications in different module for independent development.
  • Identify the baseline application.
Completed 03/09/2019
5 03/12/2019
  • Identify components required for the project
  • Allocated budget for the project
  • Order Components
Completed 03/19/2019
5 03/19/2019
  • Sensor: Perused the datasheet to get started with development
  • GPS: Went through the datasheet and circuitry details for GPS module(no.)
  • Compass & LCD: Read the respective datasheets and manuals
  • Motor: Getting hold of the specification and the user manuals
  • Android: Design the basic template of the Application
  • BLE: Thorough understanding of the module
Planned 03/26/2019
6 03/26/2019
  • Sensor: Successful interfaced ultrasonic/Lidar with LPC to get raw data
  • GPS: Successful interfaced ultrasonic/Lidar with LPC to get raw data
  • Compass & LCD: Successful interfacing between Compass and Lidar
  • Motor: Basic motor controlled vehicle orientation
  • Android: Interfacing with other modules
  • BLE: Successful interfaced BLE module with LPC to get raw data
  • Unit-testing for each module
Planned 04/02/2019
7 04/02/2019
  • ----SPRING BREAK-----
Completed 04/09/2019
8 04/09/2019
  • Sensor: Parsed the raw data to achieve useful data
  • GPS: Parsing of raw data to get meaningful values
  • Compass & LCD: Integrating GPS co-ordinates with the compass to display on LCD
  • Motor: Speed control and angle control precision testing
  • Android: Adding each module functionality and status indicators
  • BLE:
Planned 04/16/2019
9 04/16/2019
  • Sensor: Parsed the raw data to achieve useful data
  • GPS: Parsing of raw data to get meaningful values
  • Compass & LCD: Integrating GPS co-ordinates with the compass to display on LCD
  • Motor: Speed control and angle control precision testing
  • Android: End-to-end testing with other modules
  • BLE:
  • PCB designing
Planned 04/23/2019
10 04/23/2019
  • Sensor: Integrate with other modules
  • GPS: Integrate with other modules
  • Compass & LCD: Integrate with other modules
  • Motor: Integrate with other modules
  • Android: Integrate with other modules
  • BLE:
  • Master: Interfacing all modules together and integration testing
  • PCB Designing
Planned 04/30/2019
10 04/23/2019
  • Integration testing
  • Order designed PCB
Planned 04/30/2019
11 04/30/2019
  • Outdoor testing and fixing issues if any
Planned 05/07/2019
12 05/07/2019
  • Outdoor testing
Planned 05/14/2019
12 05/14/2019
  • ----FINAL PREP----
Planned 05/22/2019
12 05/22/2019
  • ----DEMO DAY----
Planned 05/22/2019

Parts List & Cost

Item# Part Desciption Vendor Qty Cost
1 RC Car Traxxas 1 $250.00
2 CAN Transceivers MCP2551-I/P Microchip [1] 15 Free Samples
3 Semtec GPS Microchip [2] 1 Free Samples
4 Tilt Compensated Magnetic Compass Robotshop[3] 1 29
5 LIPO Batteries + Charger 1
6 7" LCD 1
7 UltraSonic Sensor Maxbotix [4] 4 150

Printed Circuit Board

<Picture and information, including links to your PCB> Planned a single PCB to place and route CAN transceivers and eliminate dangling wires.

CAN Communication

With the help of CAN transceivers, each sensor module sends data in DBC format to the controller. The data from ultrasonic sensor helps in obstacle detection. The GPS and Compass Module helps with navigation. The LCD gives live information of component status and values. Finally there is motors and control unit for navigating the car as per the controller commands.

Hardware Design

<Show your CAN bus hardware design>

DBC File

Git Link to DBC file




Sensor ECU

<Picture and link to Gitlab>

Hardware Design

Software Design

<List the code modules that are being called periodically.>

Technical Challenges

<Bullet or Headings of a module>

Unreliable sonor sensors

<Problem Summary> <Problem Resolution>



Motor ECU

<Picture and link to Gitlab>

Hardware Design

Software Design

<List the code modules that are being called periodically.>

Technical Challenges

<Bullet or Headings of a module>

Unreliable Servo Motors

<Problem Summary> <Problem Resolution>



Geographical Controller

<Picture and link to Gitlab>

Hardware Design

Software Design

<List the code modules that are being called periodically.>

Technical Challenges

<Bullet or Headings of a module>

Unreliable GPS lock

<Problem Summary> <Problem Resolution>



Communication Bridge Controller & LCD

<Picture and link to Gitlab>

Hardware Design

Software Design

<List the code modules that are being called periodically.>

Technical Challenges

<Bullet or Headings of a module>

Insane Bug

<Problem Summary> <Problem Resolution>



Master Module

<Picture and link to Gitlab>

Hardware Design

Software Design

<List the code modules that are being called periodically.>

Technical Challenges

<Bullet or Headings of a module>

Improper Unit Testing

<Problem Summary> <Problem Resolution>



Mobile Application

<Picture and link to Gitlab>

Hardware Design

Software Design

<List the code modules that are being called periodically.>

Technical Challenges

<Bullet or Headings of a module>

Wifi Link Reliability

<Problem Summary> <Problem Resolution>



Conclusion

<Organized summary of the project>

<What did you learn?>

Project Video

Project Source Code

Advise for Future Students

<Bullet points and discussion>

Acknowledgement

References