Difference between revisions of "Interview Preparation topic: Recursive Function"
Proj user18 (talk | contribs) |
Proj user18 (talk | contribs) |
||
Line 5: | Line 5: | ||
<pre> | <pre> | ||
void recursion() | void recursion() | ||
− | { | + | { |
recursion(); /* function calls itself */ | recursion(); /* function calls itself */ | ||
− | } | + | } |
int main() | int main() | ||
− | { | + | { |
recursion(); | recursion(); | ||
− | } | + | } |
</pre> | </pre> | ||
Line 27: | Line 27: | ||
<pre> | <pre> | ||
#include <stdio.h> | #include <stdio.h> | ||
+ | |||
+ | int factorial(unsigned int i); | ||
+ | |||
+ | int main() | ||
+ | { | ||
+ | int number = 5; | ||
+ | printf("Factorial of %d is %d\n", number, factorial(number)); | ||
+ | return 0; | ||
+ | } | ||
int factorial(unsigned int i) | int factorial(unsigned int i) | ||
{ | { | ||
+ | |||
if(i <= 1) | if(i <= 1) | ||
{ | { | ||
return 1; | return 1; | ||
} | } | ||
+ | |||
return i * factorial(i - 1); | return i * factorial(i - 1); | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
} | } | ||
</pre> | </pre> | ||
Line 57: | Line 61: | ||
<pre> | <pre> | ||
#include <stdio.h> | #include <stdio.h> | ||
+ | |||
+ | int fibonacci(int i); | ||
+ | |||
+ | int main() | ||
+ | { | ||
+ | int number=8; | ||
+ | |||
+ | for (i = 0; i < number-1; i++) | ||
+ | { | ||
+ | printf("%d\t\n", fibonacci(i)); | ||
+ | } | ||
+ | |||
+ | return 0; | ||
+ | } | ||
+ | |||
int fibonacci(int i) | int fibonacci(int i) | ||
{ | { | ||
+ | |||
if(i == 0) | if(i == 0) | ||
{ | { | ||
Line 68: | Line 88: | ||
return 1; | return 1; | ||
} | } | ||
+ | |||
return fibonacci(i-1) + fibonacci(i-2); | return fibonacci(i-1) + fibonacci(i-2); | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
} | } | ||
</pre> | </pre> | ||
Line 108: | Line 117: | ||
int sum(int num) | int sum(int num) | ||
{ | { | ||
+ | |||
if (num != 0) | if (num != 0) | ||
− | + | { | |
+ | return num + sum(num - 1); // sum() function calls itself | ||
+ | } | ||
else | else | ||
− | + | { | |
+ | return num; | ||
+ | } | ||
+ | |||
} | } | ||
</pre> | </pre> |
Revision as of 21:01, 18 December 2016
Recursion is the process of repeating items in a self-similar way.
If a program allows you to call a function inside the same function, then it is called a recursive call of the function.
void recursion() { recursion(); /* function calls itself */ } int main() { recursion(); }
While using recursion, programmers need to be careful to define an exit condition from the function, otherwise it will go into an infinite loop.
Recursive functions are very useful to solve many mathematical problems, such as calculating the factorial of a number, generating Fibonacci series, etc.
FACTORIAL OF A NUMBER
The following example calculates the factorial of a given number using a recursive function:
#include <stdio.h> int factorial(unsigned int i); int main() { int number = 5; printf("Factorial of %d is %d\n", number, factorial(number)); return 0; } int factorial(unsigned int i) { if(i <= 1) { return 1; } return i * factorial(i - 1); }
When the above code is compiled and executed, it produces the following result:
Factorial of 5 is 120
FIBONACCI SERIES
The following example generates the Fibonacci series for a given number using a recursive function:
#include <stdio.h> int fibonacci(int i); int main() { int number=8; for (i = 0; i < number-1; i++) { printf("%d\t\n", fibonacci(i)); } return 0; } int fibonacci(int i) { if(i == 0) { return 0; } if(i == 1) { return 1; } return fibonacci(i-1) + fibonacci(i-2); }
When the above code is compiled and executed, it produces the following result:
0 1 1 2 3 5 8
SUM OF NATURAL NUMBERS
The following example calculates the sum of natural numbers using a recursive function:
#include <stdio.h> int sum(int n); int main() { int number, result; number = 5; result = sum(number); printf("Sum of %d Natural Numbers Using Recursion is %d\n",number, result); } int sum(int num) { if (num != 0) { return num + sum(num - 1); // sum() function calls itself } else { return num; } }
When the above code is compiled and executed, it produces the following result:
Sum of 5 Natural Numbers Using Recursion is 15
Discussions