Difference between revisions of "F16: Thunderbolt"
Proj user14 (talk | contribs) (→GPS Module) |
Proj user14 (talk | contribs) (→GPS Module) |
||
Line 811: | Line 811: | ||
==== GPS Module ==== | ==== GPS Module ==== | ||
− | [[File:CmpE243_F16_Thunderbolt_GPS_Module.jpg|left| | + | [[File:CmpE243_F16_Thunderbolt_GPS_Module.jpg|left|300px|thumb|SparkFun Venus GPS with SMA Connector ]] |
[[File:CmpE243_F16_Thunderbolt_GPS_Module_with_antenna.jpg|right|300px|thumb|SparkFun Venus GPS with SMA Connector ]] | [[File:CmpE243_F16_Thunderbolt_GPS_Module_with_antenna.jpg|right|300px|thumb|SparkFun Venus GPS with SMA Connector ]] | ||
Line 828: | Line 828: | ||
Structure: | Structure: | ||
$GPGGA,hhmmss.sss,ddmm.mmmm,a,dddmm.mmmm,a,x,xx,x.x,x.x,M,,,,xxxx*hh<CR><LF> | $GPGGA,hhmmss.sss,ddmm.mmmm,a,dddmm.mmmm,a,x,xx,x.x,x.x,M,,,,xxxx*hh<CR><LF> | ||
+ | |||
+ | <br><br><br><br><br><br> | ||
=== Software Design === | === Software Design === |
Revision as of 21:44, 30 November 2016
Contents
Project Title
Thunderbolt - a self driving RC car
Abstract
This section should be a couple lines to describe what your project does.
Objectives & Introduction
Show list of your objectives. This section includes the high level details of your project. You can write about the various sensors or peripherals you used to get your project completed.
Team Schedule
Color Legends :
- Common to all modules
- Master Controller
- Motor Controller
- Sensor Controller
- Geographical Controller
- Communication Bridge
Sr No | Start Date | End Date | Task | Status | Problems/Delays if any |
---|---|---|---|---|---|
1 | 09/14/2016 | 09/20/2016 |
|
Completed | |
2 | 09/21/2016 | 09/27/2016 |
|
Completed | |
3 | 09/28/2016 | 10/04/2016 |
|
Completed | |
4 | 10/05/2016 | 10/11/2016 |
|
Completed | |
5 | 10/12/2016 | 10/18/2016 |
|
Completed | |
6 | 10/19/2016 | 10/25/2016 |
|
Completed | |
7 | 10/26/2016 | 11/01/2016 |
|
Completed | |
8 | 11/02/2016 | 11/08/2016 |
|
Completed | Compass Calibration is ongoing |
9 | 11/09/2016 | 11/15/2016 |
|
In Progress | |
10 | 11/16/2016 | 11/22/2016 |
|
||
11 | 11/23/2016 | 11/29/2016 |
|
||
12 | 11/30/2016 | 12/06/2016 |
|
||
13 | 12/07/2016 | 12/13/2016 |
|
Team members and Responsibilities
- Master Controller
- Abhishek Singh
- Saurabh Ravindra Deshmukh
- Neha Biradar
- Motor Controller
- Krishank Mehta
- Neha Biradar
- Saurabh Ravindra Deshmukh
- GPS/Compass Module
- Samiksha Ambekar
- Virginia Menezes
- Sensors
- Arthur Nguyen
- Rajeev Sawant
- Samiksha Ambekar
- Bluetooth
- Abhishek Singh
- Nikhil Namjoshi
- Android Application
- Nikhil Namjoshi
- Saurabh Ravindra Deshmukh
Parts List & Cost
Item# | Part Desciption | Vendor | Datasheet | Qty | Cost |
---|---|---|---|---|---|
1 | RC Car | from Preet | 1 | ||
2 | CAN Transceivers MCP2551-I/P | Microchip [1] | MCP2551-I/P Datasheet [2] | 8 | Free Samples |
3 | Sonar Sensor | Amazon [3] | Maxbotix EZ1 MB 1010 Datasheet [4] | 4 | $24.95 |
4 | GPS with SMA Connector | SparkFun [5] | Venus638FLPx Datasheet [6] | 1 | $49.95 |
5 | Compass (CMPS11) | Acroname [7] | 1 | $45.95 | |
6 | Antenna GPS Embedded SMA | Sparkfun [8] | 1 | $11.95 | |
7 | Bluetooth to Serial Port Module HC-05 | Gearbest.com [9] | 1 | $3.25 | |
8 | Magnets | Amazon.com [10] | 1 | $4.56 |
DBC File
The DBC file implementation can be accessed at the following link:
https://gitlab.com/singh.abhishek21/Thunderbolt_CMPE243/blob/master/243.dbc
CAN Communication Table
Sr. No | Message ID | Message function | Message Data | From | To |
---|---|---|---|---|---|
High | |||||
1 | 0x148 | Communication bridge ( |
Master Controller
Schedule
Sr No | Start Date | End Date | Task | Status | Actual Completed Date |
---|---|---|---|---|---|
1 | 10/12/2016 | 10/18/2016 |
|
Completed | |
2 | 10/19/2016 | 10/25/2016 |
|
Completed | |
3 | 10/25/2016 | 11/01/2016 |
|
Completed | |
4 | 11/02/2016 | 11/08/2016 |
|
In Progress | |
5 | 11/09/2016 | 11/15/2016 |
|
||
6 | 11/16/2016 | 11/22/2016 |
|
||
7 | 11/23/2016 | 11/29/2016 |
|
||
8 | 11/30/2016 | 12/06/2016 |
|
||
9 | 12/07/2016 | 12/13/2016 |
|
Design & Implementation
The design section can go over your hardware and software design. Organize this section using sub-sections that go over your design and implementation.
Hardware Design
Discuss your hardware design here. Show detailed schematics, and the interface here.
Hardware Interface
In this section, you can describe how your hardware communicates, such as which Buses used. You can discuss your driver implementation here, such that the Software Design section is isolated to talk about high level workings rather than inner working of your project.
Software Design
Show your software design. For example, if you are designing an MP3 Player, show the tasks that you are using, and what they are doing at a high level. Do not show the details of the code. For example, do not show exact code, but you may show psuedocode and fragments of code. Keep in mind that you are showing DESIGN of your software, not the inner workings of it.
Implementation
This section includes implementation, but again, not the details, just the high level. For example, you can list the steps it takes to communicate over a sensor, or the steps needed to write a page of memory onto SPI Flash. You can include sub-sections for each of your component implementation.
Testing & Technical Challenges
Describe the challenges of your project. What advise would you give yourself or someone else if your project can be started from scratch again? Make a smooth transition to testing section and described what it took to test your project.
Sensor Controller
Group Members
- Arthur Nguyen
- Rajeev Sawant
Schedule
Sr No | Start Date | End Date | Task | Status | Actual Completion Date |
---|---|---|---|---|---|
1 | 10/05/2016 | 10/11/2016 |
|
Complete | 10/11/2016 |
2 | 10/12/2016 | 10/18/2016 |
|
Complete | 10/18/2016 |
3 | 10/19/2016 | 10/25/2016 |
|
Complete | 10/25/2016 |
4 | 10/26/2016 | 11/01/2016 |
|
Complete | 11/01/2016 |
5 | 11/02/2016 | 11/08/2016 |
|
Complete | |
6 | 11/09/2016 | 11/15/2016 |
|
||
7 | 11/16/2016 | 11/22/2016 |
|
||
8 | 11/23/2016 | 11/29/2016 |
|
||
8 | 11/30/2016 | 12/06/2016 |
|
Design & Implementation
The design section can go over your hardware and software design. Organize this section using sub-sections that go over your design and implementation.
Hardware Design
The sensor controller is the crux of the obstacle avoidance algorithm of the car.
It consists of four ultrasonic sensors connected to the LPC1758 board. We have used the MaxSonar MB1010 sensor as it provides a good balance between sensitivity and object rejection. Three of the sensors (left, center and right) are placed in the front and one sensor is positioned at the back.
Hardware Interface
In this section, you can describe how your hardware communicates, such as which BUSes used. You can discuss your driver implementation here, such that the Software Design section is isolated to talk about high level workings rather than inner working of your project.
MaxSonar MB1010 Sensor
Software Design
Show your software design. For example, if you are designing an MP3 Player, show the tasks that you are using, and what they are doing at a high level. Do not show the details of the code. For example, do not show exact code, but you may show psuedocode and fragments of code. Keep in mind that you are showing DESIGN of your software, not the inner workings of it.
Implementation
This section includes implementation, but again, not the details, just the high level. For example, you can list the steps it takes to communicate over a sensor, or the steps needed to write a page of memory onto SPI Flash. You can include sub-sections for each of your component implementation.
Testing & Technical Challenges
Describe the challenges of your project. What advise would you give yourself or someone else if your project can be started from scratch again? Make a smooth transition to testing section and described what it took to test your project.
1. Delay time of RX
2. Angle of sonar sensors
Motor & I/O Controller
Group Members
- Krishank Mehta
- Saurabh Deshmukh
- Neha Biradar
Schedule
Sr No | Start Date | End Date | Task | Status | Actual Completed Date | Problems Encountered if any |
---|---|---|---|---|---|---|
1 | 9/19/2016 | 9/27/2016 |
|
Completed | 9/25/2016 | |
2 | 9/28/2016 | 10/4/2016 |
|
Completed | 10/5/2016 | |
3 | 10/7/2016 | 10/10/2016 |
|
Completed | 10/10/2016 | Problem with finding the starting pwm pattern for DC Motor |
4 | 10/11/2016 | 10/18/2016 |
|
Completed | 10/17/2016 | |
5 | 10/20/2016 | 10/24/2016 |
|
In progress | ||
6 | 10/26/2016 | 10/28/2016 |
|
Completed | 11/26/2016 | |
7 | 11/01/2016 | 11/08/2016 |
|
In progress | ||
8 | 11/15/2016 | 11/18/2016 |
|
Completed | 11/7/2016 | |
9 | 11/18/2016 | 11/22/2016 |
|
In progress |
Design & Implementation
The design section can go over your hardware and software design. Organize this section using sub-sections that go over your design and implementation.
Hardware Design
Discuss your hardware design here. Show detailed schematics, and the interface here.
Hardware Interface
In this section, you can describe how your hardware communicates, such as which BUSes used. You can discuss your driver implementation here, such that the Software Design section is isolated to talk about high level workings rather than inner working of your project.
Software Design
Show your software design. For example, if you are designing an MP3 Player, show the tasks that you are using, and what they are doing at a high level. Do not show the details of the code. For example, do not show exact code, but you may show psuedocode and fragments of code. Keep in mind that you are showing DESIGN of your software, not the inner workings of it.
Implementation
This section includes implementation, but again, not the details, just the high level. For example, you can list the steps it takes to communicate over a sensor, or the steps needed to write a page of memory onto SPI Flash. You can include sub-sections for each of your component implementation.
Testing & Technical Challenges
Describe the challenges of your project. What advise would you give yourself or someone else if your project can be started from scratch again? Make a smooth transition to testing section and described what it took to test your project.
Geographical Controller
Group Members
- Samiksha Ambekar
- Virginia Menezes
Schedule
Sr No | Start Date | End Date | Task | Status | Actual Completed Date | Problems/Delay if any |
---|---|---|---|---|---|---|
1 | 09/14/2016 | 09/20/2016 |
|
Completed | 09/20/2016 | |
2 | 09/21/2016 | 09/27/2016 |
|
Completed | 09/27/2016 | |
3 | 09/28/2016 | 10/04/2016 |
|
Completed | 10/04/2016 | |
4 | 10/05/2016 | 10/11/2016 |
|
Completed | 10/11/2016 | |
5 | 10/12/2016 | 10/18/2016 |
|
Completed | 10/18/2016 | |
6 | 10/19/2016 | 10/25/2016 |
|
Completed | 10/20/2016 | |
7 | 10/26/2016 | 11/01/2016 |
|
Completed | 10/31/2016 | |
8 | 11/02/2016 | 11/08/2016 |
|
Completed | 11/07/2016 | |
9 | 11/09/2016 | 11/15/2016 |
|
Completed | 11/13/2016 | |
10 | 11/16/2016 | 11/22/2016 |
|
Completed | 11/20/2016 | |
11 | 11/23/2016 | 11/29/2016 |
|
In Progress | ||
12 | 11/30/2016 | 12/06/2016 |
|
In Progress | ||
13 | 12/07/2016 | 12/13/2016 |
|
Design & Implementation
The Geographical Controller is used to track the current location of the car. The module comprises of a GPS module and a compass.
Once the user choses the destination point on the Android application, the app will map the shortest path available from the current location to the destination and plot multiple checkpoints based on that. The coordinates of these checkpoints are sent to the GEO controller, which will calculate the distance between the current location of the car and the next checkpoint and the turn angle required to reach the next checkpoint and send this information to the Master controller.
Hardware Design
The GPS module used is SparkFun Venus GPS with SMA Connector [11]. And the Compass is CMPS11 compass [12]
Hardware Interface
GPS Module
The GPS Module used is SparkFun Venus GPS with SMA Connector based on Venus638FLPx IC. It sends out the information in standard NMEA-0183 format or Skytraq Binary sentence format. The default rate is 9600 bps and is configurable up to 115200 bps, with update rates up to 20 Hz.
We have configured the module to a rate of 38400 bps UART at 5 Hz. Skytraq GUI is used to configure the GPS module
The module outputs NMEA message in format of GGA - Global Positioning System Fix Data. Time, position and fix related data for a GPS receiver.
Structure: $GPGGA,hhmmss.sss,ddmm.mmmm,a,dddmm.mmmm,a,x,xx,x.x,x.x,M,,,,xxxx*hh<CR><LF>
Software Design
Show your software design. For example, if you are designing an MP3 Player, show the tasks that you are using, and what they are doing at a high level. Do not show the details of the code. For example, do not show exact code, but you may show psuedocode and fragments of code. Keep in mind that you are showing DESIGN of your software, not the inner workings of it.
Implementation
This section includes implementation, but again, not the details, just the high level. For example, you can list the steps it takes to communicate over a sensor, or the steps needed to write a page of memory onto SPI Flash. You can include sub-sections for each of your component implementation.
Testing & Technical Challenges
Describe the challenges of your project. What advise would you give yourself or someone else if your project can be started from scratch again? Make a smooth transition to testing section and described what it took to test your project.
Communication Bridge Controller
Group Members
- Nikhil Namjoshi
- Saurabh Deshmukh
Schedule
Sr No | Start Date | End Date | Task | Status | Actual Completed Date |
---|---|---|---|---|---|
1 | 9/27/2016 | 10/4/2016 |
|
Complete | 10/4/2016 |
2 | 10/6/2016 | 10/8/2016 |
|
Complete | 10/8/2016 |
3 | 9/30/2016 | 10/2/2016 |
|
Complete | 10/2/2016 |
4 | 10/2/2016 | 10/6/2016 |
|
Complete | 10/6/2016 |
5 | 10/10/2016 | 10/25/2016 |
|
In Progress | |
6 | 10/25/2016 | 11/2/2016 |
|
Completed | 10/31/2016 |
7 | 11/3/2016 | 11/11/2016 |
|
||
8 | 11/12/2016 | 11/23/2016 |
|
||
9 | 11/26/2016 | 12/5/2016 |
|
Design & Implementation
The design section can go over your hardware and software design. Organize this section using sub-sections that go over your design and implementation.
Hardware Design
Discuss your hardware design here. Show detailed schematics, and the interface here.
Hardware Interface
In this section, you can describe how your hardware communicates, such as which BUSes used. You can discuss your driver implementation here, such that the Software Design section is isolated to talk about high level workings rather than inner working of your project.
Software Design
Show your software design. For example, if you are designing an MP3 Player, show the tasks that you are using, and what they are doing at a high level. Do not show the details of the code. For example, do not show exact code, but you may show psuedocode and fragments of code. Keep in mind that you are showing DESIGN of your software, not the inner workings of it.
Implementation
This section includes implementation, but again, not the details, just the high level. For example, you can list the steps it takes to communicate over a sensor, or the steps needed to write a page of memory onto SPI Flash. You can include sub-sections for each of your component implementation.
Testing & Technical Challenges
Describe the challenges of your project. What advise would you give yourself or someone else if your project can be started from scratch again? Make a smooth transition to testing section and described what it took to test your project.
Conclusion
Conclude your project here. You can recap your testing and problems. You should address the "so what" part here to indicate what you ultimately learnt from this project. How has this project increased your knowledge?
Project Video
Upload a video of your project and post the link here.
Project Source Code
References
Acknowledgement
Any acknowledgement that you may wish to provide can be included here.
References Used
List any references used in project.
Appendix
You can list the references you used.