Difference between revisions of "S15: Cyclops: Smart RC Car"
(→Abstract) |
(→Objectives & Introduction) |
||
Line 17: | Line 17: | ||
== Objectives & Introduction == | == Objectives & Introduction == | ||
− | + | In a world of autonomous systems, it is only a matter of time till we see autonomous cars on the roads, that drive themselves. Our concept for the RC car is based on the same concept. The car will drive itself from a starting point to an ending point provided by the driver, which in our case is the host computer. The car is also capable to avoid obstacles in its path using three LV-MaxSonar-EZ0 Ultrasonic Range Sensors in the front. ( work in progress) | |
=== Team Members & Responsibilities === | === Team Members & Responsibilities === |
Revision as of 23:20, 21 April 2015
Contents
Grading Criteria
- How well is Software & Hardware Design described?
- How well can this report be used to reproduce this project?
- Code Quality
- Overall Report Quality:
- Software Block Diagrams
- Hardware Block Diagrams
- Schematic Quality
- Quality of technical challenges and solutions adopted.
Cyclops: Smart RC Car
Abstract
The Smart RC car is an autonomous car that given a destination coordinate, drives to that location without any user interaction. It also has the ability to avoid obstacles in its path with the help of Sonar sensors.
Objectives & Introduction
In a world of autonomous systems, it is only a matter of time till we see autonomous cars on the roads, that drive themselves. Our concept for the RC car is based on the same concept. The car will drive itself from a starting point to an ending point provided by the driver, which in our case is the host computer. The car is also capable to avoid obstacles in its path using three LV-MaxSonar-EZ0 Ultrasonic Range Sensors in the front. ( work in progress)
Team Members & Responsibilities
- Hector Prado-Guerrero
- GPS / Navigation Development
- Calvin Lai
- Sonar Sensors / Lane Guidance
- Britto Thomas
- Motor Control / Wireless Communication
Schedule
Show a simple table or figures that show your scheduled as planned before you started working on the project. Then in another table column, write down the actual schedule so that readers can see the planned vs. actual goals. The point of the schedule is for readers to assess how to pace themselves if they are doing a similar project.
Week# | Date | Task | Status | Actual |
---|---|---|---|---|
1 | 04/17 | PWM tasks Completed
Mounting equipment Completed Some code for object tracking Some code on GPS |
Pending | |
2 | 04/24 | GPS and Compass completed
Wireless completed Sensors completed |
Pending | |
3 | 05/01 | Obstacle avoidance Completed
GPS Navigation completed |
Pending | |
4 | 05/08 | Object Tracking / Lane Guidance Completed | Pending | |
5 | 05/15 | Testing and Verification | Pending | |
6 | 05/22 | More Testing and Verification
Possibly Android app over BT |
Pending | |
7 | 05/25 | Demo Date | Pending |
Parts List & Cost
Give a simple list of the cost of your project broken down by components. Do not write long stories here.
Design & Implementation
The design section can go over your hardware and software design. Organize this section using sub-sections that go over your design and implementation.
Hardware Design
Discuss your hardware design here. Show detailed schematics, and the interface here.
Hardware Interface
In this section, you can describe how your hardware communicates, such as which BUSes used. You can discuss your driver implementation here, such that the Software Design section is isolated to talk about high level workings rather than inner working of your project.
Software Design
Show your software design. For example, if you are designing an MP3 Player, show the tasks that you are using, and what they are doing at a high level. Do not show the details of the code. For example, do not show exact code, but you may show psuedocode and fragments of code. Keep in mind that you are showing DESIGN of your software, not the inner workings of it.
Implementation
This section includes implementation, but again, not the details, just the high level. For example, you can list the steps it takes to communicate over a sensor, or the steps needed to write a page of memory onto SPI Flash. You can include sub-sections for each of your component implementation.
Testing & Technical Challenges
Describe the challenges of your project. What advise would you give yourself or someone else if your project can be started from scratch again? Make a smooth transition to testing section and described what it took to test your project.
Include sub-sections that list out a problem and solution, such as:
My Issue #1
Discuss the issue and resolution.
1) Motor controls were not working as per the documentation of previous groups.
- It is important that there is a COMMON GROUND for the motor and the servo. So we connected all the required grounds to the SJSU boards ground and it all functioned as needed.
Conclusion
Conclude your project here. You can recap your testing and problems. You should address the "so what" part here to indicate what you ultimately learnt from this project. How has this project increased your knowledge?
Project Video
Upload a video of your project and post the link here.
Project Source Code
References
Acknowledgement
Any acknowledgement that you may wish to provide can be included here.
References Used
List any references used in project.
Appendix
You can list the references you used.