Difference between revisions of "S21: Roadster"
Proj user12 (talk | contribs) (→Schedule) |
Proj user12 (talk | contribs) (→Schedule) |
||
Line 210: | Line 210: | ||
* Design obstacle avoidance and steering logic on the DRIVER node | * Design obstacle avoidance and steering logic on the DRIVER node | ||
* Design motor driving logic on the MOTOR node | * Design motor driving logic on the MOTOR node | ||
+ | * Interface the LCD module with the DRIVER node to display messages | ||
* Integrate sensor data on the SENSOR node | * Integrate sensor data on the SENSOR node | ||
* Interface the Android app with Bluetooth module on DRIVER node | * Interface the Android app with Bluetooth module on DRIVER node |
Revision as of 21:31, 16 March 2021
Contents
Roadster
Abstract
Roadster is a self-driving RC car. (TODO)
Introduction
The project was divided into N modules:
- Sensor ...
- Motor..
- ...
- Android
Team Members & Responsibilities
<Team Picture>
- Nimit Patel
- Sourab Gupta
- Srikar Reddy Narapureddy
- Tejas Pidkalwar
- Tirth Pandya
<Provide ECU names and members responsible> <One member may participate in more than one ECU>
- Sensor
- Link to Gitlab user1
- Link to Gitlab user2
- Motor
- Link to Gitlab user1
- Link to Gitlab user2
- Geographical
- Link to Gitlab user1
- Link to Gitlab user2
- Communication Bridge Controller & LCD
- Link to Gitlab user1
- Link to Gitlab user2
- Android Application
- Link to Gitlab user1
- Link to Gitlab user2
- Testing Team
- Link to Gitlab user1
- Link to Gitlab user2
Schedule
Week# | Start Date | End Date | Task | Actual Completion | Status |
---|---|---|---|---|---|
1
03/01 to 03/07 Start of Phase 1 |
|
|
|
|
|
2
03/08 to 03/14 |
|
|
|
|
|
3
03/15 to 03/21 |
|
|
|
|
|
4
03/22 to 03/28 |
|
|
|
|
|
5
03/29 to 04/04 End of Phase 1 |
|
|
|
|
|
Parts List & Cost
Item# | Part Desciption | Vendor | Qty | Cost |
---|---|---|---|---|
1 | RC Car | Traxxas | 1 | $250.00 |
2 | CAN Transceivers MCP2551-I/P | Microchip [1] | 8 | Free Samples |
Printed Circuit Board
<Picture and information, including links to your PCB>
CAN Communication
<Talk about your message IDs or communication strategy, such as periodic transmission, MIA management etc.>
Hardware Design
<Show your CAN bus hardware design>
DBC File
<Gitlab link to your DBC file> <You can optionally use an inline image>
Sensor ECU
<Picture and link to Gitlab>
Hardware Design
Software Design
<List the code modules that are being called periodically.>
Technical Challenges
< List of problems and their detailed resolutions>
Motor ECU
<Picture and link to Gitlab>
Hardware Design
Software Design
<List the code modules that are being called periodically.>
Technical Challenges
< List of problems and their detailed resolutions>
Geographical Controller
<Picture and link to Gitlab>
Hardware Design
Software Design
<List the code modules that are being called periodically.>
Technical Challenges
< List of problems and their detailed resolutions>
Communication Bridge Controller & LCD
<Picture and link to Gitlab>
Hardware Design
Software Design
<List the code modules that are being called periodically.>
Technical Challenges
< List of problems and their detailed resolutions>
Master Module
<Picture and link to Gitlab>
Hardware Design
Software Design
<List the code modules that are being called periodically.>
Technical Challenges
< List of problems and their detailed resolutions>
Mobile Application
<Picture and link to Gitlab>
Hardware Design
Software Design
<List the code modules that are being called periodically.>
Technical Challenges
< List of problems and their detailed resolutions>
Conclusion
<Organized summary of the project>
<What did you learn?>
Project Video
Project Source Code
Advise for Future Students
<Bullet points and discussion>
Acknowledgement
=== References ===