Difference between revisions of "F20: Tom & Jerry"

From Embedded Systems Learning Academy
Jump to: navigation, search
(SCHEDULE)
(SCHEDULE)
Line 122: Line 122:
 
|
 
|
 
* Drawing basic maze module on LED matrix(Soumya)
 
* Drawing basic maze module on LED matrix(Soumya)
* PCB Layout Design on Eagle (Shivani)
+
* PCB Layout Design on Eagle (Shivani -  11/27/2020)
 
* Read song from MP3 list and execute on hardware (Sarika)
 
* Read song from MP3 list and execute on hardware (Sarika)
 
|
 
|
Line 138: Line 138:
 
* Finalize game logic and game architecture
 
* Finalize game logic and game architecture
 
* Integrate game logic code with LED matrix(Soumya & Shivani)
 
* Integrate game logic code with LED matrix(Soumya & Shivani)
* Basic integration for controlling characters on maze (Soumya & Shivani)
+
* Basic integration for controlling characters on maze (Soumya & Shivani - 11/27/2020)
 
|
 
|
 
* <span style="color:orange">In progress</span>
 
* <span style="color:orange">In progress</span>
Line 151: Line 151:
 
|
 
|
  
* Working on RGB matrix integration with accelerometer bug
+
* Working on RGB matrix integration with accelerometer (Shivani & Soumya)
* Designing multiple maze frames using the logic of maze frame 1
+
* Designing initial maze frames (Shivani & Soumya)
* Integrate MP3 with game setup
+
* Integrate MP3 with RGB Matrix(Soumya & Sarika)
 
* Establish complete connection on PCB
 
* Establish complete connection on PCB
 
* Assemble the components and begin testing
 
* Assemble the components and begin testing
* Update the wiki page.
+
* Update the wiki page (Shivani)
 
|
 
|
 
* <span style="color:orange">In progress</span>
 
* <span style="color:orange">In progress</span>
* <span style="color:orange">In progress</span>
+
* <span style="color:orange">Complete</span>
* <span style="color:red">Not started</span>
+
* <span style="color:red">Complete</span>
* <span style="color:red">Not started</span>
 
 
* <span style="color:red">Not started</span>
 
* <span style="color:red">Not started</span>
 
* <span style="color:red">Not started</span>
 
* <span style="color:red">Not started</span>
 +
* <span style="color:red">Complete</span>
 
|-
 
|-
 
! scope="row"| 9
 
! scope="row"| 9
Line 171: Line 171:
 
* 12/08/2020
 
* 12/08/2020
 
|
 
|
 +
* Integrating RGB, Accelerometer and MP3
 +
* Designing multiple maze logics based on initial Maze
 
* Address bugs during testing of integrated system
 
* Address bugs during testing of integrated system
 
* Integrate all components and finalize packaging
 
* Integrate all components and finalize packaging
 
|
 
|
 +
* <span style="color:orange">In Progress</span>
 +
* <span style="color:orange">In Progress</span>
 
* <span style="color:red">Not started</span>
 
* <span style="color:red">Not started</span>
 
* <span style="color:red">Not started</span>
 
* <span style="color:red">Not started</span>

Revision as of 23:20, 1 December 2020

Tj1.jpg

INTRODUCTION

We intend to design a game using RGB LED Matrix and microcontroller LPC 4058.

OBJECTIVE

The game objectives are as follows:

    • Interfacing the RGB LED Matrix with SJTwo Microcontroller
    • Coding simple to use display functions for displaying characters at any given position
    • Randomizer to generate random position for Jerry
    • Tasks that can move Tom depending on the user:
    • Interrupt to be generated on press of button to start game/Pause the game
    • Score Counter and Energy Counter to be displayed at the top and updated in real time as the game progresses
    • Title Screen and Game Over screens
    • MP3 driver for playing audio

TEAM MEMBERS AND RESPONSIBILITIES

  • Shivani Pradeep Tambatkar
    • Wiki Page Updates.
    • Accelerometer Driver
    • PCB and Hardware Design
    • Integrating Accelerometer and RGB Matrix
    • Maze Design
    • Finalizing Game Logic and Testing
    • Packaging and Component Assembling
  • Soumya Sahu
    • RGB Matrix Interface and Design of base matrix code.
    • Maze Design
    • PCB Design Verification
    • Finance Manager
    • Bill of Material
    • Finalizing Game Logic and Testing

SCHEDULE

Week# Start Date End Date Task Status
1
  • 09/22/2020
  • 09/29/2020
  • 09/28/2020
  • 09/29/2020
  • Literature Survey of Previous year Projects
  • Submission of Project Proposal
  • Completed
  • Completed
2
  • 10/16/2020
  • 10/20/2020
  • Created GitLab Repository post project proposal approval
  • Create Wiki page for our project
  • Create Wiki Schedule
  • Completed
  • Completed
  • Completed
3
  • 10/20/2020
  • 10/27/2020
  • Read and familiarize with LED Matrix Datasheet
  • Read and familiarize with Accelerometer MMA8452Q datasheet.
  • Completed
  • Completed
4
  • 10/27/2020
  • 11/03/2020
  • Finalize Components and place the order for the required parts
  • Completed
5
  • 11/03/2020
  • 11/10/2020
  • Write multiple lines on LED Matrix successfully (Soumya)
  • Finalize the wiki schedule
  • Modifying code to detect all four directions from accelerometer (Shivani)
  • Reading MP3 datasheet and started writing driver (Sarika)
  • Completed
  • Completed
  • Completed
  • Completed
6
  • 11/10/2020
  • 11/17/2020
  • Drawing basic maze module on LED matrix(Soumya)
  • PCB Layout Design on Eagle (Shivani - 11/27/2020)
  • Read song from MP3 list and execute on hardware (Sarika)
  • Completed
  • Completed
  • Completed
7
  • 11/18/2020
  • 11/24/2020
  • Finalize game logic and game architecture
  • Integrate game logic code with LED matrix(Soumya & Shivani)
  • Basic integration for controlling characters on maze (Soumya & Shivani - 11/27/2020)
  • In progress
  • Complete
  • Complete
8
  • 11/25/2020
  • 12/01/2020
  • Working on RGB matrix integration with accelerometer (Shivani & Soumya)
  • Designing initial maze frames (Shivani & Soumya)
  • Integrate MP3 with RGB Matrix(Soumya & Sarika)
  • Establish complete connection on PCB
  • Assemble the components and begin testing
  • Update the wiki page (Shivani)
  • In progress
  • Complete
  • Complete
  • Not started
  • Not started
  • Complete
9
  • 12/02/2020
  • 12/08/2020
  • Integrating RGB, Accelerometer and MP3
  • Designing multiple maze logics based on initial Maze
  • Address bugs during testing of integrated system
  • Integrate all components and finalize packaging
  • In Progress
  • In Progress
  • Not started
  • Not started
10
  • 12/09/2020
  • 12/14/2020
  • Update Gitlab repo with final code.
  • Update test video.
  • Final wiki page update.
  • Not started
  • Not started
  • Not started
11
  • 12/16/2020
  • Final Demo
  • Not started


Parts List & Cost

Part # Cost Source
SJ2 Board 1 $50.00 Preet
Sparkfun RGB (32x64) LED Matrix Display 1 $65.72 Amazon
PCB Fabrication 1 $25.00 JLC PCB
5V/4A Power Adapter 1 $8.99 Amazon
12v DC Power Jack Adapter Connector 1 $3.90 Amazon
Jumper Wires 1 $6.99 Amazon
  • Total Cost: $195.7

Design & Implementation

The design section can go over your hardware and software design. Organize this section using sub-sections that go over your design and implementation.

Hardware Design

Discuss your hardware design here. Show detailed schematics, and the interface here.

Hardware Interface

In this section, you can describe how your hardware communicates, such as which BUSes used. You can discuss your driver implementation here, such that the Software Design section is isolated to talk about high level workings rather than inner working of your project.

Software Design

Show your software design. For example, if you are designing an MP3 Player, show the tasks that you are using, and what they are doing at a high level. Do not show the details of the code. For example, do not show exact code, but you may show psuedocode and fragments of code. Keep in mind that you are showing DESIGN of your software, not the inner workings of it.

Implementation

This section includes implementation, but again, not the details, just the high level. For example, you can list the steps it takes to communicate over a sensor, or the steps needed to write a page of memory onto SPI Flash. You can include sub-sections for each of your component implementation.

Testing & Technical Challenges

1. LED MATRIX:

The OE pin when low, it switches off the LEDs before transition to next row) and LAT (when high) it latches the output pin with current row value). Before transitioning new row value it is important to follow the above instructions, otherwise you will see ghosting effect in the LEDs.

Conclusion

Conclude your project here. You can recap your testing and problems. You should address the "so what" part here to indicate what you ultimately learnt from this project. How has this project increased your knowledge?

Project Video

Upload a video of your project and post the link here.

Project Source Code

References

Acknowledgement

Any acknowledgement that you may wish to provide can be included here.

References Used

List any references used in project.

Appendix

You can list the references you used.