Difference between revisions of "F20: Tom & Jerry"

From Embedded Systems Learning Academy
Jump to: navigation, search
(Schedule)
(Team Members & Responsibilities)
Line 11: Line 11:
 
=== Team Members & Responsibilities ===
 
=== Team Members & Responsibilities ===
 
*'''[https://www.linkedin.com/in/sarika-natu-52b3b548/ Sarika Natu]'''   
 
*'''[https://www.linkedin.com/in/sarika-natu-52b3b548/ Sarika Natu]'''   
**  Writing MP3 Driver
+
**  Git Repository
 +
**  MP3 Decoder Driver
 +
 
 
*'''[https://www.linkedin.com/in/shivani30/ Shivani Pradeep Tambatkar]'''  
 
*'''[https://www.linkedin.com/in/shivani30/ Shivani Pradeep Tambatkar]'''  
**   
+
**  Wiki Page Updates.
 +
**  Accelerometer Driver
 +
**  PCB and Hardware Design
 +
**  Integrating Accelerometer and RGB Matrix
 +
**  Maze Design
 +
**  Game Logic and testing
 +
**  Packaging and Component Assembling
 +
 
 
*'''[https://www.linkedin.com/in/soumyasahu02/ Soumya Sahu]'''
 
*'''[https://www.linkedin.com/in/soumyasahu02/ Soumya Sahu]'''
**
+
**   RGB Matrix Interface and Design of base matrix code.
 +
**  Maze Design
 +
**  PCB Design Verification
 +
**  Finance Manager
 +
**  Bill of Material
 +
**  Game Logic and testing
  
 
=== Technical Responsibilities ===
 
=== Technical Responsibilities ===

Revision as of 17:41, 30 November 2020

Tom & Jerry

Tj1.jpg

Abstract

The idea is to relive the childhood days using this game. The mouse will run inside the maze. The maze will be displayed on the RGB matrix. The route for the mouse will be selected from the pre-defined path at initial state in runtime. The cat (player) will chase this mouse by tilting the board left and right. The cat motion will be deliberated in the forward direction. We are using the SoC accelerometer in SJ2 board for sensing the motion. The cat must catch the mouse before mouse reaches its destination hole. If cat get attracted to drink milk (this is an obstacle), then it must halt for some time, and this will waste it’s time for a while at the same place. The mouse will start running first and then after a delay, the cat will start its motion. The score will be displayed on the LCD which is optional display.

Objectives & Introduction

Show list of your objectives. This section includes the high level details of your project. You can write about the various sensors or peripherals you used to get your project completed.

Team Members & Responsibilities

  • Shivani Pradeep Tambatkar
    • Wiki Page Updates.
    • Accelerometer Driver
    • PCB and Hardware Design
    • Integrating Accelerometer and RGB Matrix
    • Maze Design
    • Game Logic and testing
    • Packaging and Component Assembling
  • Soumya Sahu
    • RGB Matrix Interface and Design of base matrix code.
    • Maze Design
    • PCB Design Verification
    • Finance Manager
    • Bill of Material
    • Game Logic and testing

Technical Responsibilities

Responsibilities
  • Accelerometer Driver
Shivani Pradeep Tambatkar
  • LED Matrix Driver
Soumya Sahu
  • Enclosure
Shivani
  • PCB
Shivani Pradeep Tambatkar
  • MP3 Decoder
Sarika Natu
  • LED Matrix & Accelerometer Integration
Soumya Sahu & Shivani Pradeep Tambatkar

Administrative Responsibilities

Administrative Responsibilities
  • Wiki Page Update
Shivani Pradeep Tambatkar
  • BOM
Soumya Sahu
  • Git Repository
Sarika Natu
  • Finance Manager
Soumya Sahu

Schedule

Week# Start Date End Date Task Status
1
  • 09/22/2020
  • 09/29/2020
  • 09/28/2020
  • 09/29/2020
  • Literature Survey of Previous year Projects
  • Submission of Project Proposal
  • Completed
  • Completed
2
  • 10/16/2020
  • 10/20/2020
  • Created GitLab Repository post project proposal approval
  • Create Wiki page for our project
  • Create Wiki Schedule
  • Completed
  • Completed
  • Completed
3
  • 10/20/2020
  • 10/27/2020
  • Read and familiarize with LED Matrix Datasheet
  • Read and familiarize with Accelerometer MMA8452Q datasheet.
  • Completed
  • Completed
4
  • 10/27/2020
  • 11/03/2020
  • Finalize Components and place the order for the required parts
  • Completed
5
  • 11/03/2020
  • 11/10/2020
  • Write multiple lines on LED Matrix successfully (Soumya)
  • Finalize the wiki schedule
  • Modifying code to detect all four directions from accelerometer (Shivani)
  • Reading MP3 datasheet and started writing driver (Sarika)
  • Completed
  • Completed
  • Completed
  • Completed
6
  • 11/10/2020
  • 11/17/2020
  • Drawing basic maze module on LED matrix(Soumya)
  • PCB Layout Design on Eagle (Shivani)
  • Read song from MP3 list and execute on hardware (Sarika)
  • Completed
  • Completed
  • Completed
7
  • 11/18/2020
  • 11/24/2020
  • Finalize game logic and game architecture
  • Integrate game logic code with LED matrix
  • Basic integration for controlling characters on maze (Soumya & Shivani)
  • Not started
  • In progress
  • In progress
8
  • 11/25/2020
  • 12/01/2020
  • Integrate MP3 with game setup
  • Establish complete connection on PCB
  • Assemble the components and begin testing
  • Update the wiki page.
  • Not started
  • Not started
  • Not started
  • Not started
9
  • 12/02/2020
  • 12/08/2020
  • Address bugs during testing of integrated system
  • Integrate all components and finalize packaging
  • Not started
  • Not started
10
  • 12/09/2020
  • 12/14/2020
  • Update Gitlab repo with final code.
  • Update test video.
  • Final wiki page update.
  • Not started
  • Not started
  • Not started
11
  • 12/16/2020
  • Final Demo
  • Not started


Bills of Materials

Materials

Quantity

  • SJSU DEV 2 Board (SJTWO)
  • 1 (Purchased from Preet Kang)
  • Sparkfun MP3 Decoder
  • 1
  • Sparkfun 32x64 LED Matrix
  • 1
  • 5V Barrel Jack Power Supply
  • 1
  • PCB Manufacturing
  • 1
  • Regulator
  • 1
  • Female and Male Headers
  • 4
  • Jumper Wires
  • 25
  • Ribbon Cables
  • 2

Design & Implementation

The design section can go over your hardware and software design. Organize this section using sub-sections that go over your design and implementation.

Hardware Design

Discuss your hardware design here. Show detailed schematics, and the interface here.

Hardware Interface

In this section, you can describe how your hardware communicates, such as which BUSes used. You can discuss your driver implementation here, such that the Software Design section is isolated to talk about high level workings rather than inner working of your project.

Software Design

Show your software design. For example, if you are designing an MP3 Player, show the tasks that you are using, and what they are doing at a high level. Do not show the details of the code. For example, do not show exact code, but you may show psuedocode and fragments of code. Keep in mind that you are showing DESIGN of your software, not the inner workings of it.

Implementation

This section includes implementation, but again, not the details, just the high level. For example, you can list the steps it takes to communicate over a sensor, or the steps needed to write a page of memory onto SPI Flash. You can include sub-sections for each of your component implementation.

Testing & Technical Challenges

1. LED MATRIX:

The OE pin when low, it switches off the LEDs before transition to next row) and LAT (when high) it latches the output pin with current row value). Before transitioning new row value it is important to follow the above instructions, otherwise you will see ghosting effect in the LEDs.

Conclusion

Conclude your project here. You can recap your testing and problems. You should address the "so what" part here to indicate what you ultimately learnt from this project. How has this project increased your knowledge?

Project Video

Upload a video of your project and post the link here.

Project Source Code

References

Acknowledgement

Any acknowledgement that you may wish to provide can be included here.

References Used

List any references used in project.

Appendix

You can list the references you used.