Difference between revisions of "F20: Hungry Snake"
Proj user6 (talk | contribs) (→Schedule) |
Proj user6 (talk | contribs) (→Hardware Design) |
||
Line 181: | Line 181: | ||
=== Hardware Design === | === Hardware Design === | ||
− | + | ||
+ | === <font color="000000"> Overview </font> === | ||
+ | |||
+ | === <font color="000000"> Interface Board Design </font> === | ||
+ | |||
+ | The purpose of the interface board is to provide stable, permanent connection to the SJ2 board. It includes connection to all the components that are necessary for the game to run. | ||
+ | |||
+ | === <font color="000000"> Controller Board Design </font> === | ||
+ | |||
+ | The purpose of the controller board is to obtain user feedback to the game. Similar to a real controller, the controller board contains one joystick that can detect five different directions (up, down, left, right, and center). This is used to control movement of the snake in game. Two buttons, confirm(green) and cancel(red) are included on the board so they can be used to select options on the opening screen. An accelerometer, LSM303, is attached to the controller board through female headers for the ease of removal, in the event which the accelerometer needs to be replaced. The controller board also contains an LED to indicate that the board has been supplied of power. The communication between the controller board and the interface board is through and IDC 10-pin header and ribbon cable. The reason why flat ribbon cable is selected is because the crimper, header, and wire for such cable is cheap and readily available. | ||
=== Hardware Interface === | === Hardware Interface === |
Revision as of 03:39, 23 November 2020
Contents
Hungry Snake
Abstract
This section should be a couple lines to describe what your project does.
Objectives & Introduction
Show list of your objectives. This section includes the high level details of your project. You can write about the various sensors or peripherals you used to get your project completed.
Team Members & Responsibilities
- Yang Chen
- Game Development, Code Repo Management
- Yanshen Luo
- Hardware Development
- David Tang
- Game Development
- Nuoya Xie
- Hardware Development - LED Matrix, Controller, and PCB Design
Schedule
TEAM SCHEDULE | ||||
---|---|---|---|---|
Week# |
Date |
Task |
Status | |
1 | 10/10/20 |
|
| |
2 | 10/17/20 |
|
| |
3 | 10/24/20 |
|
| |
4 | 10/31/20 |
|
| |
5 | 11/7/20 |
|
| |
6 | 11/14/20 |
|
| |
7 | 11/21/20 |
|
| |
8 | 11/28/20 |
|
| |
9 | 12/5/20 |
|
| |
10 | 12/12/20 |
|
| |
11 | 12/16/20 |
|
|
Parts List & Cost
Give a simple list of the cost of your project broken down by components. Do not write long stories here.
Design & Implementation
The design section can go over your hardware and software design. Organize this section using sub-sections that go over your design and implementation.
Hardware Design
Overview
Interface Board Design
The purpose of the interface board is to provide stable, permanent connection to the SJ2 board. It includes connection to all the components that are necessary for the game to run.
Controller Board Design
The purpose of the controller board is to obtain user feedback to the game. Similar to a real controller, the controller board contains one joystick that can detect five different directions (up, down, left, right, and center). This is used to control movement of the snake in game. Two buttons, confirm(green) and cancel(red) are included on the board so they can be used to select options on the opening screen. An accelerometer, LSM303, is attached to the controller board through female headers for the ease of removal, in the event which the accelerometer needs to be replaced. The controller board also contains an LED to indicate that the board has been supplied of power. The communication between the controller board and the interface board is through and IDC 10-pin header and ribbon cable. The reason why flat ribbon cable is selected is because the crimper, header, and wire for such cable is cheap and readily available.
Hardware Interface
In this section, you can describe how your hardware communicates, such as which BUSes used. You can discuss your driver implementation here, such that the Software Design section is isolated to talk about high level workings rather than inner working of your project.
Software Design
Show your software design. For example, if you are designing an MP3 Player, show the tasks that you are using, and what they are doing at a high level. Do not show the details of the code. For example, do not show exact code, but you may show psuedocode and fragments of code. Keep in mind that you are showing DESIGN of your software, not the inner workings of it.
Implementation
This section includes implementation, but again, not the details, just the high level. For example, you can list the steps it takes to communicate over a sensor, or the steps needed to write a page of memory onto SPI Flash. You can include sub-sections for each of your component implementation.
Testing & Technical Challenges
Describe the challenges of your project. What advise would you give yourself or someone else if your project can be started from scratch again? Make a smooth transition to testing section and described what it took to test your project.
Include sub-sections that list out a problem and solution, such as:
<Bug/issue name>
Discuss the issue and resolution.
Conclusion
Conclude your project here. You can recap your testing and problems. You should address the "so what" part here to indicate what you ultimately learnt from this project. How has this project increased your knowledge?
Project Video
Upload a video of your project and post the link here.
Project Source Code
References
Acknowledgement
Any acknowledgement that you may wish to provide can be included here.
References Used
List any references used in project.
Appendix
You can list the references you used.