Difference between revisions of "S16: Camera Gimbal"
Proj 146u4 (talk | contribs) (→Schedule) |
Proj 146u4 (talk | contribs) (→Parts List & Cost) |
||
Line 111: | Line 111: | ||
| 80 | | 80 | ||
| Preet | | Preet | ||
+ | | | ||
+ | |- | ||
+ | |- | ||
+ | | MPU-9250 9DoF IMU | ||
+ | | 1 | ||
+ | | 12.50 | ||
+ | | Amazon | ||
| | | | ||
|- | |- |
Revision as of 02:31, 24 May 2016
Contents
Grading Criteria
- How well is Software & Hardware Design described?
- How well can this report be used to reproduce this project?
- Code Quality
- Overall Report Quality:
- Software Block Diagrams
- Hardware Block Diagrams
- Schematic Quality
- Quality of technical challenges and solutions adopted.
Abstract
The ‘Camera Gimbal’ is an active stabilization system for camera phones. Smartphones and handheld devices encounter issues when slight movements are encountered when a user attempts to take an image or record a video. Such issues include blurring of images and/or video. This gadget will be able to stabilize a phone by using three low RPM brushless motors that are actively controlled using PID with an accelerometer and magnetometer as feedback to the system. Using this gadget, users will achieve crisp clean photos/videos without any additional hassle.
Objectives & Introduction
The objective of this project was to create a 3-axis self-stabilizing phone holder, or gimbal. Entirely 3D printed, the system can stabilize any standard sized smartphone that is mounted using several neodymium magnets. The system utilizes 3 DC servo motors, one per each XYZ-axis of rotation to account for all degrees of motion; each motor is controlled through PWM from the SJ One Board running FreeRTOS. Using the MPU-9250 IMU, sensor data is used to compute gimbal orientation, which is mapped to PWM values as shown below. By applying filter algorithms to account for drift and/or noise, near accurate stabilization was made possible.
Team Members & Responsibilities
- Matthew Boyd
- Solidworks & controls systems
- Ronald Cheng
- 9DoF solution
Schedule
Week # | Start Date | End Date | Task | Status | Notes |
---|---|---|---|---|---|
1 | 3/28 | 4/03 | Project Proposal and outline | Completed | - Parts ordered 3/25 |
2 | 4/04 | 4/10 | Component testing/setup and PCB design | Completed | - Servomotors chosen over brushless motors due to ease of control circuitry |
3 | 4/11 | 4/17 | 1. Start of SolidWorks design 2. Being motor control driver development 3. PCB final review & order |
Completed | - Frame 3D printed and commercial phone holder used
- Initial prototype done on Arduino Mega |
4 | 4/18 | 4/24 | 1. Create PID system 2. Verify PCB 3. Review CAD design & start print |
Completed | - Wiring housed in a 3D printed encasing
- 3D printing started at SJSU SCE |
5 | 4/25 | 5/01 | Product integration & testing | Completed | - 3rd axis of integration often most complex
- Complimentary/Kalman filters recommended to overcome error as result of drift and noise - Final z-axis rotation was delayed to 5/02 as result of noise in yaw |
6 | 5/02 | 5/08 | 1. Design improvements 2. Update Wiki guidelines & create demo video |
Completed | - Wire housing was enlarged to account for voltage regulators
- Yaw was computed using gyroscope and Riemann summation (relative to power-on position) |
7 | 5/09 | 5/15 | Final product testing |
Parts List & Cost
Part | Quantity | Cost($/per) | Retailer | Details |
---|---|---|---|---|
SJ One Board | 1 | 80 | Preet | |
MPU-9250 9DoF IMU | 1 | 12.50 | Amazon |
Design & Implementation
The design section can go over your hardware and software design. Organize this section using sub-sections that go over your design and implementation.
Hardware Design
Discuss your hardware design here. Show detailed schematics, and the interface here.
Hardware Interface
In this section, you can describe how your hardware communicates, such as which BUSes used. You can discuss your driver implementation here, such that the Software Design section is isolated to talk about high level workings rather than inner working of your project.
Software Design
Show your software design. For example, if you are designing an MP3 Player, show the tasks that you are using, and what they are doing at a high level. Do not show the details of the code. For example, do not show exact code, but you may show psuedocode and fragments of code. Keep in mind that you are showing DESIGN of your software, not the inner workings of it.
Implementation
This section includes implementation, but again, not the details, just the high level. For example, you can list the steps it takes to communicate over a sensor, or the steps needed to write a page of memory onto SPI Flash. You can include sub-sections for each of your component implementation.
Testing & Technical Challenges
Describe the challenges of your project. What advise would you give yourself or someone else if your project can be started from scratch again? Make a smooth transition to testing section and described what it took to test your project.
Include sub-sections that list out a problem and solution, such as:
My Issue #1
Discuss the issue and resolution.
Conclusion
Conclude your project here. You can recap your testing and problems. You should address the "so what" part here to indicate what you ultimately learnt from this project. How has this project increased your knowledge?
Project Video
Upload a video of your project and post the link here.
Project Source Code
References
Acknowledgement
Any acknowledgement that you may wish to provide can be included here.
References Used
List any references used in project.
Appendix
You can list the references you used.