
Preet Kang

April 2012

Stack & Heap

Demonstration

CPU Starts

 Startup File configures initial Heap & Stack Pointers

Main Allocates Memory

 Stack Pointer moves down based on variables declared in

main()

Task 1 Created

 Task 1 gets its memory from HEAP to be later used for its

STACK

Task 2 Created

 Another Task gets memory from the HEAP for its STACK

FreeRTOS Starts & T1 Starts
 main() now essentially gives up CPU and FreeRTOS will

never enter it again.

 FreeRTOS now manipulates STACK pointer based on which
task is currently in context.

T1 Allocates Memory On Stack

 T1’s STACK moves down to make room for local variables

Context Switch to T2

 FreeRTOS manipulates STACK pointer to run T2 so it is

looking at its vars.

T2 Allocates Memory on Stack

 When T2 allocates memory, it comes from its STACK

Interrupt

 When Interrupt occurs, the Hardware moves STACK Ptr to

its dedicated region

Any Task Allocating Heap

 Any task allocating memory from HEAP comes from global

Heap Memory

